UNIVERSITY OF GHANA
LEGON

HANDBOOK FOR GRADUATE STUDIES

COURSE DESCRIPTIONS OF PROGRAMMES
IN THE COLLEGES OF BASIC AND APPLIED SCIENCES
AND HEALTH SCIENCE

School of Graduate Studies
VOLUME 2

COURSE DESCRIPTIONS OF PROGRAMMES
IN THE HUMANITIES
# TABLE OF CONTENTS

1. **General Information on the University of Ghana** ...... 2 - 12

2. **Faculty of Agriculture (College of Agric. & Consumer Sciences)** ...... 13 - 59
   - Department of Agricultural Economics & Agribusiness ...... 13 - 22
   - Department of Agricultural Extension ...... 23 - 27
   - Department of Animal Science ...... 28 - 34
   - Department of Crop Science ...... 35 - 42
   - Department of Family and Consumer Sciences ...... 43 - 53
   - Department of Soil Science ...... 54 - 59

3. **Faculty of Engineering Sciences** ...... 60 - 62
   - Department of Agricultural Engineering ...... 60 - 62

4. **Faculty of Science** ...... 63 - 142
   - Department of Biochemistry ...... 63 - 66
   - Department of Botany ...... 67 - 76
   - Department of Chemistry ...... 77 - 79
   - Department of Earth Science ...... 80 - 95
   - Department of Mathematics ...... 96 - 99
   - Department of Nutrition & Food Science ...... 100 - 105
   - Department of Oceanography & Fisheries ...... 106 - 111
   - Department of Physics ...... 112 - 115
   - Department of Statistics ...... 116 - 118
   - Department of Zoology ...... 119 - 125
   - Insect Science Programme - ARPPIS (Entomology) ...... 126 - 131
   - Environmental Science Programme ...... 131 - 133
   - School of Nuclear and Allied Sciences (SNAS) ...... 134 - 142

5. **College of Health Sciences** ...... 143 - 221
   - Department of Anatomy ...... 143 - 146
   - Department of Haematology ...... 147 - 149
   - Department of Medical Biochemistry ...... 150 - 153
   - Department of Microbiology ...... 154 - 157
   - Department of Pharmacology ...... 158 - 161
   - Department of Physiology ...... 162 - 164
   - Department of Chemical Pathology ...... 165 - 167
   - Department of Pathology ...... 168 - 170
   - School of Nursing ...... 171 - 177
   - School of Public Health ...... 178 - 187
   - Department of Population, Family and Reproductive Health ...... 188 - 216
THE ARMS OF THE UNIVERSITY

Blue shield with three “AYA” standing
Upright in top half and “DWENIMENTOASO”
In the middle of bottom half – all embossed in gold. (Designed by A.M. Opoku)
THE UNIVERSITY OF GHANA
GENERAL INFORMATION

Postal Address - P. O. Box LG 25, Legon, Ghana
Fax - (233-302) 500383/502701
Telephone - (233-302) 500381/500194/502255/502257/
502258/500430/500306/514552
E-mail - academic@ug.edu.gh
pad@ug.edu.gh

Overseas Address - The Overseas Representative
Universities of Ghana Office
321 City Road, London, ECIV ILJ, England
Tel: 44 (0) 207-2787-413
Fax: 44 (0) 2077-135-776
E-mail: ugoouk@aol.com

Academic Year - August to May
Language of Instruction - English
Solicitors - Bentsi-Enchill, Letsa and Ankomah
1st Floor Teachers’ Hall Annex, Education Loop
(Off Barnes Road) Adabraka
P.O. Box 1632, Accra

- Lexcom Associates
  Legal Practitioners and Consultants
  P. O. Box 11428, Accra-North

Bankers - Ghana Commercial Bank, Legon Branch, Ghana
- Standard Chartered Bank, Legon Branch, Ghana
- ECOBANK Legon Branch, Ghana

- Ghana International Bank, Plc

- Citibank, N.A. 046
  P.O. 5870 Grand Central Station
  New York, NY 10163
  USA

Auditors - Osei Kwabena and Associates
(Chartered Accountants)
71 Palace Street, B 603/18
North Kaneshie
Justice Samuel K. Date-Bah - Chairman
Professor Ernest Aryeetey - Vice-Chancellor
Mrs. Elizabeth Adabor - Appointed by Government
Professor John Meyer Hyde - Appointed by Government
Professor Robert D. Baeta - Appointed by Government
Professor Francis N.A. Dodoo - Elected by Convocation
Dr. Elsie Effah Kaufmann - Elected by Convocation
Mr. J.K. Klinogo - Appointed by Council
Mr. Richard Kwame Asante - Appointed by Council
Dr. Kodzo Gavua - Representing University Teachers Association of Ghana (UTAG)
Mr. Kwesi Yankey - Representing University of Ghana Alumni Association
Mr. Samuel Ofori-Adjei - Representing the Conference of Heads of Assisted Secondary Schools (CHASS)
Mr. Rester Togormey - Representing Graduate Students
Mr. Benedict Sumah - Representing Students’ Representative Council (SRC)
Mr. Augustine Saakuur-Karbo - Representing the TEWU of TUC

In Attendance

Professor E. K. Osam - Pro-Vice-Chancellor (Academic and Student Affairs)
Professor John Gyapong - Pro-Vice-Chancellor (Research Innovation and Development)
Mr. Edward Effah - Chairman, Council of College of Health Sciences
Mr. Ken Ofori-Atta - Chairman, Council of College of Agriculture and Consumer Sciences
Mr. R.O. Boapea - Director, Finance Directorate
Mr. Joseph M. Budu - Registrar/Secretary
UNIVERSITY OFFICERS

CHANCELLOR

Kofi Annan
(Kumasi) DEA (UHEI) MSc (Massachusetts)

PRINCIPAL OFFICERS

Chairman, University Council - Samuel K. Date-Bah
LLB (Ghana) BL LLM (Yale), PhD (London)

Vice-Chancellor - Ernest Aryeetey
BA (Econ) MA (Ghana) MSc (Kumasi) PhD (Dortmund)

OTHER OFFICERS

Pro-Vice-Chancellor (Academic and Student Affairs) - Emmanuel K. A. Osam
BA MPhil (Ghana) PhD (Oregon)

Pro-Vice-Chancellor (Research, Innovation and Development) - John Gyapong
BSc (KNUST), MSc, PhD (London)

Registrar - Joseph M. Budu
BA (Ghana) Dip Ed MA (London)

University Librarian - Ellis E. Badu
BSc(KNUST), Grad. Dip. (Lib. Stud.) (Ghana), MInfSc (Ibadan), PhD (Sheffield)

OFFICES OF PROVOSTS

College of Health Sciences - Aaron N. L. Lawson
MB ChB (Ghana) PhD (Leicester)

College of Agriculture and Consumer Sciences - Samuel K. Offei
BSc (Agric) (Ghana), MPhil (Lond) Dip (Seed Pathology) (Den) PhD (Lond) DIC

OFFICES OF DEANS

School of Agriculture - John Ofosu-Anim (Acting)
BSc (Ghana), MSc (Kagawa, Japan), PhD (Nagoya, Japan)

Faculty of Arts - Rev. Prof. Cephas N. Omenyo (Vice-Dean)
BA, MPhil (Ghana), PhD (Utrecht)
Faculty of Law - Edward K. Quashigah
LLB (Ghana) LLM PhD (Nigeria)

Faculty of Engineering Sciences - Richard Bani
BSc (KNUST), MSc PhD (Eng., Cranfield)

Faculty of Science - Daniel K. Asiedu
BSc (Ghana) MSc, PhD (Okayama)

Faculty of Social Studies - Samuel Agyei-Mensah
BA (Ghana) MPhil PhD (Trondheim)

Business School - Kwame A. Domfeh
BA, MPA, PhD (Ghana)

Medical School - Christine Ntim-Amponsah
BDS (Ghana) FRCP FWACS

Dental School - Grace Parkins
BDS (Ghana) MSc FEACOP FRCDS (Canada)

School of Allied Health Sciences - Edwin K. Wiredu
MB ChB (Ghana) FRCPPath, MIAC FWACP

Graduate Studies - Kwadwo Ofori
BSc (Agric) (Ghana) MSc PhD (Sask)

Dean of Students - James K. Adomako,
BSc MPhil PhD (Ghana)

International Programmes - Naa Ayikailay Adamafio
MSc (Ghana) PhD (Monash)

Accra City Campus - John F. Wiredu
BA (Ghana) PhD (Ibadan)

School of Nursing - Ernestina Sarfoa Donkor (Acting)
BSc (Ghana) MSc (Ulster)
PhD (Lond) GCAP (UK) FWCN

School of Public Health - Fred N. Binka
MB ChB (Ghana) MPH (Hebrew) PhD (Basel)

DIRECTORS OF SCHOOLS/INSTITUTES/CENTRES

Institute of Continuing and Distance Education - Yaw Oheneba-Sakyi
BA (Ghana) MA (SUNY) PhD (Brigham Young)

Institute of African Studies - Akosua Adomako Ampofo
BSc MSc (Kumasi) PhD (Vanderbilt)
Institute of Agricultural Research - Kwame Afreh-Nuamah
BSc, MSc (Ghana) PhD (London) DIC

Institute of Statistical Social and Economic Research - Clement Ahiadeke
BA (Hons) MA (Ghana) MPH (Johns Hopkins) PhD (Cornell)

Noguchi Memorial Institute for Medical Research - Alexander K. Nyarko
MSc (Ghana) PhD (Philadelphia)

Regional Institute for Population Studies - Francis N.A. Dodoo
BA MA (Washington State) PhD (Pennsylvania)

School of Communication Studies - Margaret I. Amoakohene (Acting)
BA MPhil (Ghana) PhD (Leicester)

School of Performing Arts - Awo M. Asiedu (Acting)
BA MPhil (Ghana) PhD (Birmingham)

Legon Centre for International Affairs - Kwame Boafo-Arthur
BA (Ghana) MA (Carleton) PhD BL (Ghana) LLB

Centre for Tropical Clinical Pharmacology and Therapeutics - Alexander N.O. Dodoo
BPharm (Hons) (Kumasi) MSc (Lond) PhD (Lond)

Language Centre - Sika Ahadzie (Acting)
BA MPhil (Ghana) PhD (Birmingham)

Ecology Laboratory Centre - Patrick K. Ofori-Danson
BSc Educ (Cape Coast) MSc PhD (Ghana)

Centre for Social Policy Studies - Ellen Bortei-Doku Aryeetey
BA (Kumasi) MA (Reading) PhD (Michigan)

Centre for Gender Studies and Advocacy - Dzodzi A. Tsikata
MA (The Hague) MPhil (Ghana)
LL BL (Ghana) PhD (Leiden)

Centre for Migration Studies - Mariama Awumbila
BA Grad.Dip (Ghana) PhD (Newcastle)

Academic Quality Assurance Unit - Vacant

West Africa Centre for Crop Improvement - Eric Y. Danquah
BSc (Agric) (Ghana) MPhil PhD (Camb)

Institute of Environment and Sanitation Sciences - Christopher Gordon
BSc, MSc (Ghana) PhD (Lond)
ADMINISTRATIVE DIRECTORATES/UNITS

College of Health Sciences - Frank K. Yeboah (College Registrar)
BA MPA (Ghana)

College of Agriculture and Consumer Sciences - Peter B. Yarquah (College Registrar)
BA (Hon), Grad.Dip. (Comm. Studies) (Ghana)
M.Ed (Birmingham) APR (Ghana)

Finance Directorate - R.O. Boapea
BSc (Hons)Admin(Ghana), CA (Gh)

Academic Affairs Directorate - Enoch A. Amartey
BA MPA (Ghana)

Physical Development and Municipal Services Directorate - Philip Azundow
Dip Ing ARCH (Sarajevo) AGIA

University Health Services - Josephina M. Blankson-Hemans (Acting)
BSc MB ChB

Public Affairs Directorate - Stella A. Amoa
BA MA (Int Affairs) (Ghana)

Human Resource and Organisational Development - Mercy Haizel Ashia
BA EMBA (Ghana)

Internal Audit - George A Habib
BA MSc UCE) ACCA CFS FCCA

Planning and Management Information Services Systems - Alfred Quartey (Acting)
BSc MBA (Ghana)

Counseling and Placement Centre - John G. Egyir-Croffet (Acting)
BSc (Ghana) MEd PGCE (Cape Coast)

ICT Directorate - Emmanuel Owusu-Oware
BSc (Ghana) MBA (Ghana/Vrije)

Sports Directorate - Emmanuel Owusu-Ansah
Dip (Hennef) MSc PhD (Poland)
Executive Masters in Sports Mgmt. (Lyon)

University of Ghana Basic Schools - Cecilia Morrison (Headmistress)
Dip Ed (Winneba) BEd MEd (Cape Coast) PGDE (India)

Student Financial Aid Office - Christine Baning
BBA (Liberia) MBA (Ghana)

University of Ghana Hostels - Martin Asiedu (General Manager)
HEADS OF HALLS/HOSTELS

Legon - David Atta-Peters
   BSc MPhil PhD (Ghana)

Akufo - Vladimir Antwi-Danso
   BA (Ghana), PhD (Leningrad), MA (Tufts)

Commonwealth - George Armah
   BSc MSc (Ghana) PhD (Osaka)

Volta - Esther O. Sakyi-Dawson
   BSc MPhil (Ghana) PhD (Cornell)

Mensah-Sarbah - Josephine Dzahene-Quarshie
   BA (Ghana) PhD (Lond)/Vice Master

Post Graduate Studies/ Valco Trust Hostels - Kwadwo Ofori
   BSc (Agric) (Ghana) MSc PhD (Sask)

International Students’ Hostel/ Jubilee Hall - Naa Ayikailey Adamafio
   MSc (Ghana) PhD (Monash)

SENIOR TUTORS

Legon - Malcom Josiah
   BSc (Kumasi) MSc MPhil (Newcastle)
   PhD (Calif) MGhIE MASABE MGSAE

Akufo - George Akanlig-Pare
   BA MPhil PhD (Ghana)

Commonwealth - Thomas Aquinas Adjadeh
   BSc (Agric) (Ghana) MSc PhD (Iwate)

Volta - Angelina Lily Armah
   BA (Hons) Grad Dip (Lib Stud) MPhil (Info Stud) (Ghana)

Mensah Sarbah - Ted Y. Annang
   BSc MPhil PhD (Ghana)

MEMBERS OF THE BOARD OF GRADUATE STUDIES

Prof. Kwadwo Ofori (Chairman) - BSc(Agric) (Ghana), MSc PhD (Sask)
(Dean, SGS)

Prof. Harry Akussah - BA, Grad Dip, MA, PhD (Ghana) MSc (London)
(Vice-Dean, SGS)

**Rev. Prof. Cephas N. Omenyo**  
(Faculty of Arts)  
- BA, MPhil (Ghana), PhD (Utrecht)

**Prof. Kofi Agyekum**  
(Faculty of Arts)  
- BA(Ghana) MPhil (Trondheim) PhD (Ghana)

**Prof. E.K. Quashigah**  
(Faculty of Law)  
- LLB (Ghana), LLM, PhD (Nigeria)

**Dr. N.A. Josiah-Aryeh**  
(Faculty of Law)  
- LLB (Ghana), LLM, PhD (London)

**Prof. E.O. Owusu**  
(Faculty of Science)  
- BSc (Ghana), MSc (Japan), EMBA (Ghana), PhD (Japan)

**Prof. B.K. Banoeng-Yakubo**  
(Faculty of Science)  
- BSc, MPhil (Ghana), MSc (Ife), PhD (Ghana)

**Prof. Yaw Oheneba-Sakyi**  
(Faculty of Social Studies)  
- BA (Ghana), MA (SUNY) PhD (Brigham Young)

**Prof. Daniel Obeng-Ofori**  
(CACS)  
- BSc (Agric) (Ghana) MPhil, PhD (Cambridge)

**Prof. Ramatu Al-Hassan**  
(CACS)  
- BSc(Agric) (KNUST), MA (Agric. Econs) (Wash. State), PhD (Agric. Econs)(Iowa State)

**Prof. John Ofosu-Anim**  
(Academic Board Rep)  
- BSc (Ghana), MSc (Kagawa), PhD (Nagoya)

**Dr. Elsie Effah Kaufmann**  
(Academic Board Rep)  
- BSE, MSE, PhD (Penn)

**Prof. E.A. Baryeh**  
(Faculty of Engineering Sciences)  
- BSc (Hons) (KNUST), MSc PhD (Iowa State)

**Dr. Malcolm Josiah**  
(Faculty of Engineering Sciences)  
- BSc (Kumasi) MSc MPhil (Newcastle) PhD (Calif) MGhIE MASABE MGSAE

**Prof. Richard Adanu**  
(College of Health Sciences)  
- MB ChB (Ghana), MRCOG, FNACS

**Prof. K.M. Bosompem**  
(College of Health Sciences)  
- BSc MSc PhD (Ghana)
Dr. R.A. Kwame-Aryee - MB ChB (Ghana) FWACS
(College of Health Sciences)

Dr. Patrick Ayeh-Kumi - BSc MPhil (Ghana), PhD (Ghana)
(College of Health Sciences)

Prof. Kwame Domfeh - BA MPA PhD(Ghana)
(UG Business School)

Prof. Robert E. Hinson - BSc MBA (Ghana)
(UG Business School)

Mr. C. Amehoe (Secretary) - BA Sec, Dip. Ed (UCC), MA (Ghana), MEd (UEW)
(Ag. Exec. Sec, SGS)
THE UNIVERSITY OF GHANA was founded in 1948 as the University College of the Gold Coast on the recommendation of the Asquith Commission on Higher Education in the then British colonies. The Asquith Commission, which was set up in 1943 to investigate Higher Education, recommended among other things, the setting up of University Colleges in association with the University of London. This was followed up by a number of separate Commissions in different regions. The West Africa Commission was under the Chairmanship of the Rt. Hon. Walter Elliot. The Elliot Commission published a majority report which recommended the establishment of two University Colleges in the Gold Coast (Ghana) and Nigeria, and a minority report which held that only one University College for the whole of British West Africa was feasible. The British Government at first accepted the minority report of the Elliot Commission and decided that a University College for the whole of British West Africa should be established at Ibadan in Nigeria. But the people of the Gold Coast could not accept this recommendation. Led by the scholar and politician, the late Dr. J.B. Danquah, they urged the Gold Coast Government to inform the British Government that the Gold Coast could support a University College. The British Government accordingly reviewed its decision and agreed to the establishment of the University College of the Gold Coast.

The University College of the Gold Coast was founded by Ordinance on August 11, 1948 for the purpose of providing for and promoting university education, learning and research. Its first Principal was the late Mr. David Mowbray Balme. Mr. Balme was farsighted, courageous and dedicated to the promotion of scholarship. By his vision, industry and single-mindedness of purpose, he built a college and laid the foundations for a sound University which is now a source of pride. In his ten years of principalship, he created an institution whose key-note was orderly living with dignity in a community of scholars. One of the recommendations of the Asquith Commission was that the British Government should set up an Inter-Universities Council to advise on all matters relating to Higher Education in the new British Colonies. The Inter-Universities Council served the new University College of the Gold Coast in an advisory capacity, but it approved all academic appointments. This arrangement helped the College to maintain the high academic standards associated with the Universities in Britain. Also, it enabled the College to seek the support of the Council in obtaining funds from the United Kingdom Government sources.

From its inception, the University College of the Gold Coast was admitted to the Scheme of Special Relationship extended by the University of London to certain English and overseas University Colleges. Under this scheme, the University College was allowed to teach for the external degree examinations of London University. It also allowed the College to modify the London syllabuses to suit local conditions and to take part in the setting and marking of examinations. But London University gave final approval for courses and examinations since the degrees given were those of the University of London. For thirteen years, therefore, the University College looked up to two separate institutions in Great Britain: to the Inter-Universities Council for guidance on its broad policy, and to the University of London for approval and control of details of degree regulations. The University College benefitted greatly from this arrangement which certainly helped to maintain its high academic standards.

In the 1960-61 academic year, the College Council made a request to the Government of Ghana for legislation to constitute the University College into a University with the power to award its
own degrees. The Government appointed an International Commission to examine the problem. On the recommendations of that Commission, the University of Ghana was set up by an Act of Parliament on October 1, 1961 (Act 79). The then President of the Republic of Ghana, Dr. Kwame Nkrumah, became the first Chancellor of the University, with Nana Kobina Nketsia IV, Omanhene of Essikado, as the (Interim) Vice Chancellor.

**VISITATION OF THE UNIVERSITY:** The University Council, in 2007, appointed a Visitation Panel to review the University’s academic programmes, infrastructure, resources, administrative and governance structures. The Panel submitted a comprehensive report with recommendations on ways in which the structures of the University can be improved, with a view to enhancing efficiency. It is expected that the far-reaching changes in the undergraduate programmes, course credit and grading systems, which are being introduced as from the 2010/2011 academic year, and which are the outcome of the recommendations of the Visitation Panel, will go a long way towards improving the quality of graduates produced by the University. Recommendations on infrastructural resources, administrative and governance structures are at various stages of implementation.

**ENROLMENT STATISTICS:** With a current student population of 35,683 (representing a male/female ratio of about 3:2) the University of Ghana is the oldest and largest of the six public Universities in Ghana. The total number of students includes 4,437 at the Accra City Campus and 4,532 undertaking their studies by the Distance Mode. Also included in this number are 3,196 post-graduate students and 3,596 students on modular or sandwich programmes.

**ASSOCIATIONS AND LINKS:** The University of Ghana is a member of the International Association of Universities (IAU), the Association of Commonwealth Universities (ACU) and the Association of African Universities (AAU). The University is also a member the League of World Universities (which comprises 47 renowned research universities all over the world). The University has also established academic and research links with several Universities and Research Institutions worldwide. In addition, the University has been linked to the Norwegian Universities’ Committee for Development Research and Education (NUFU), the Council for International Educational Exchange (CIEE) based in New York, International Student Exchange Programmes (ISEP) and the Commonwealth Universities Student Exchange Consortium (CUSAC), among others.

**INSTITUTIONAL AFFILIATIONS:** There are currently a number of institutes/colleges locally which hold affiliations with the University of Ghana for the purpose of enrolment, teaching and award of degrees and diplomas of the University. These affiliations cover non-degree, Bachelor’s degree and post-graduate degree programmes. Institutes/Colleges which currently hold affiliation status with the University are as follows:

1. St. Peter’s Seminary - Diploma/Bachelor of Arts
2. St. Paul’s Seminary - Bachelor of Arts
3. St. Victor’s Seminary - Diploma/Bachelor of Arts
4. Christian Service University College - Diploma/Bachelor of Arts
5. National Film and Television Institute - Bachelor of Arts
6. Ghana Institute of Journalism - Bachelor of Arts
7. Regional Maritime University - Master of Arts
8. Ghana Armed Forces Command and - Master of Arts
<table>
<thead>
<tr>
<th>No.</th>
<th>College Name</th>
<th>Degree(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Ghana Institute of Languages</td>
<td>Bachelor of Arts</td>
</tr>
<tr>
<td>10.</td>
<td>Islamic University College</td>
<td>Bachelor of Arts/Business</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td>11.</td>
<td>Pentecost University College</td>
<td>Diploma/Bachelor of Arts/Business</td>
</tr>
<tr>
<td></td>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Catholic University College</td>
<td>Bachelor of Arts/Bachelor of Science</td>
</tr>
<tr>
<td>13.</td>
<td>Methodist University College</td>
<td>Diploma/Bachelor of Arts/Business</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td>14.</td>
<td>Wisconsin University College, Ghana</td>
<td>Bachelor of Arts/Master of Arts</td>
</tr>
<tr>
<td>15.</td>
<td>Institute of Accountancy Training</td>
<td>Diploma</td>
</tr>
<tr>
<td>16.</td>
<td>Nursing Training Colleges</td>
<td>Diploma</td>
</tr>
<tr>
<td>17.</td>
<td>Presbyterian University College</td>
<td>Bachelor of Arts</td>
</tr>
<tr>
<td>18.</td>
<td>Narh-Bita School of Nursing</td>
<td>Diploma</td>
</tr>
<tr>
<td>19.</td>
<td>African University College of Communications</td>
<td>Bachelor of Arts</td>
</tr>
</tbody>
</table>
PRECINCTS

The campus of the University lies about 13 kilometres north-east of Accra, the capital of Ghana, at an altitude of between 90 and 100 metres. From the Main University Gate on the Dodowa Road, the University Avenue extends to Commonwealth Hall on Legon Hill.

Along it are grouped other Halls of Residence, Departments, lecture theatres and laboratories. Mid-way, an open space - the University Square - with an ornamental pool is over-looked by the Balme Library (named after David Mowbray Balme, the first Principal of the University College). Across from the University Square are sports fields, a Central Cafeteria and halls of residence. Behind Commonwealth Hall is an open-air theatre with a Grecian style auditorium built into the slope of Legon Hill. On the summit of Legon Hill is the Convocation Group of Buildings which houses the University’s administration offices, the Great Hall, with a seating capacity of 1,500 and a Tower donated by the Government of Ghana in 1959 to commemorate Ghana’s Independence. On the southern side of the campus are residential accommodation for staff, the University Basic Schools, the Noguchi Memorial Institute for Medical Research, School of Public Health, the Sports Stadium, a night market, supermarket and student hostels; while on the Northern side are more teaching departments, lecture theatres and laboratories. Across the Accra-Dodowa road from the Main University Gate is a Police Station, a University Hospital and housing for Junior Staff of the University.

The College of Health Sciences has its administration as well as the Medical/Dental /Allied Health Sciences and Pharmacy Schools located at the Korle-Bu Teaching Hospital, which is about three kilometres west of the centre of Accra, and about 18 kilometres from the main University campus.

The Accra City Campus of the University, located close to the business district of the nation’s capital, was established to provide part-time education for mature persons and for persons who prefer not to study full time.
DEPARTMENT OF AGRICULTURAL ECONOMICS & AGRIBUSINESS

The Department offers the following programmes:

1. Master in Agricultural Administration (MAA)
2. M.Phil Agricultural Administration
3. M.Phil Agribusiness
4. M.Phil Agricultural Economics
5. M.Agric. with Specialization in Agricultural Economics
6. Ph.D. Agricultural Economics

The areas of specialization in the M.Phil. Agricultural Economics and Ph.D. Agricultural Economics Programmes are the following:
   a. Marketing
   b. Farm Management and Production Economics
   c. Economic Development and the Environment

Departmental Requirements:

(i) Computer literacy is required of all postgraduate students in the Department

(ii) In Ph.D. programmes, relevant remedial courses will be prescribed for candidates. All Ph.D candidates are required to pass a written Ph.D qualifying examination.

M.A. AGRICULTURAL ADMINISTRATION

This is a one-year programme of course work plus a dissertation.

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMN 603</td>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>ADMN 684</td>
<td>Human Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>AGE 603</td>
<td>Research Methodology and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>AGE 604</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>AGE 607</td>
<td>Theories and Management of Agricultural Development</td>
<td>3</td>
</tr>
<tr>
<td>AGE 615</td>
<td>Agricultural Finance</td>
<td></td>
</tr>
<tr>
<td>AGE 621</td>
<td>Agricultural Institutions</td>
<td>3</td>
</tr>
<tr>
<td>AGE 622</td>
<td>Project Analysis and Management</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES

Elective courses may be taken from within or outside the Department (for example, MBA courses offered by the University of Ghana Business School) in consultation with the Department Advisory Committee, the Graduate Studies Committee and the Head of Department.

Seminar and Dissertation
M.PHIL AGRICULTURAL ADMINISTRATION

This is a two-year programme of course work plus a thesis

YEAR I

Core Courses                                      Credits
ADMN 603   Economics                           3
ADMN 684   Human Resource Management           3
AGEC 603   Research Methodology and Statistics  3
AGEC 604   Computer Applications               3
AGEC 607   Theories and Management of Agricultural Development 3
AGEC 610   Seminar I                            3
AGEC 615   Agricultural Finance                3
AGEC 621   Agricultural Institutions          3
AGEC 622   Project Analysis and Management      3

ELECTIVES

Elective courses may be taken from within or outside the Department (for example, MBA courses offered by the School of Administration) in consultation with the Department Advisory Committee, the Graduate Studies Committee and the Head of Department.

YEAR II

AGEC 660   Thesis                               30
AGEC 620   Seminar II                          3

M.PHIL AGRIBUSINESS

This is a two-year programme of course work plus a thesis

YEAR I

Core Courses                                      Credits
ADMN 603   Economics                           3
ADMN 684   Human Resource Management           3
AGEC 604   Computer Applications               3
AGEC 610   Seminar I                            3
AGEC 611   Farm Business Management I           3
AGEC 612   Farm Business Management II          3
AGEC 613   Agricultural Trade I: Internal       3
AGEC 615   Agricultural Finance                3
AGEC 622   Project Analysis and Management      3
AGEC 625  Domestic Agro-Industrial Management  3
AGEC 626  International Agro-Industrial Management  3
AGEC 627  Quantitative Methods for Business  3
AGEC 628  Agricultural Law  3

ELECTIVES
Candidates may select from the following courses in consultation with the Department Advisory Committee, the Graduate Studies Committee and the Head of Department:

CREDITS
AGEC 616  Production Economics  3
AGEC 623  Operations Research I  3
AGEC 624  Operations Research II  3
AGEC 629  Foreign Language  3
AGEC 631  Special Study I  3
AGEC 632  Special Study II  3

YEAR II
AGEC 660  Thesis  30
AGEC 620  Seminar II  3

INTERNERSHIP SCHEME
Candidates in the M.Phil. Agricultural Administration and M.Phil. Agribusiness Programmes undergo internship for three months.

M.PHIL. AGRICULTURAL ECONOMICS

This is a two-year programme of course work plus a thesis

YEAR I

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 601  Advanced Mathematical Methods</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 602  Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 603  Research Methodology and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 604  Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 616  Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 601  Microeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 606  Microeconomics II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 603  Macroeconomics I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 604  Macroeconomics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Depending on the option chosen, a candidate may select from the following elective courses within or outside the Department in consultation with the Department Advisory Committee, the Graduate Studies Committee and the Head of Department.
M.AGRIC. WITH SPECIALIZATION IN AGRICULTURAL ECONOMICS

This is a twelve-month demand driven programme of course work plus a long essay.

COURSES
Courses are selected from the M.Phil. Courses. In addition, Graduate Special Study courses (2-5 credits per semester) may be selected each semester. The content of each of these special study courses is made flexible to cater for the specific needs of the candidate. The courses are selected with the approval of the relevant Department Advisory Committee, the Graduate Studies Committee, the Head of Department and the organisation which sponsored the candidate.

Ph.D. AGRICULTURAL ECONOMICS

This is a three-year programme of research plus a thesis. All candidates are expected to pass a Ph.D qualifying examination.

Ph.D. Qualifying Examinations
The qualifying written examination shall consist of the following graduate level papers:

1. Economic Theory Examination, which combines the following:
   • Microeconomic Theory
The Ph.D. qualifying examination shall be written by the candidate not later than one year after registration for the programme. The Graduate Studies Committee in consultation with the Supervisory Committee shall prescribe remedial courses for the candidate, in order to facilitate the candidate’s preparation for the qualifying examination and to further prepare the candidate to write a thesis which shall have the highest likelihood of contributing significantly to knowledge.

A candidate shall have two chances to pass the Ph.D. qualifying examination. The second attempt shall be made six months after the date of the declaration of the results of the first attempt at the examination. A pass mark for all qualifying examinations shall be a grade B (i.e. 50%) or better. There shall be a Ph.D Examination Committee of at least three (3) Senior Members selected by the department for a 3-year period. Qualifying examinations shall be conducted by the department two times each year.

**Ph.D. Research and Thesis Preparation**

The candidate’s Supervisory Committee in consultation with the Graduate Studies Committee shall agree on the candidate’s thesis area and topic.

**COURSE DESCRIPTIONS**

**AGEC 601 ADVANCED MATHEMATICAL METHODS**


**AGEC 602 ECONOMETRICS**


AGEC 603 RESEARCH METHODOLOGY AND STATISTICS

AGEC 604 COMPUTER APPLICATIONS
This course deals with computer operating systems, construction and use of flow charts and algorithms to solve problems. It also deals with the nature and uses of various spreadsheet software, word processing, data management, graphics, statistical and econometric software. Hands-on assignments are emphasized. Participants in the course are expected to use the computer to prepare and present thesis research output.

AGEC 605 AGRICULTURE AND ECONOMIC DEVELOPMENT I: POLICY


AGEC 606 AGRICULTURE AND ECONOMIC DEVELOPMENT II: PLANNING

AGEC 607 THEORIES AND MANAGEMENT OF AGRICULTURAL DEVELOPMENT
Part I: Theories and Models

Part II: Planning and Management.
Practical issues in planning and managing agricultural development: inter-sectoral linkages; design of agricultural plan; diagnostic survey; setting targets; strategies and policy instruments.
Planning and projects: integration within sector and with other sectors in the national plan. Organisation, financing agricultural plans. Monitoring, reporting and control.

Public service: research, extension, education, infrastructure, etc., tools for managing change: appraisal, network, M & F, etc. Case studies and exercises.

**AGEC 610 SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**AGEC 611 FARM BUSINESS MANAGEMENT I**

**AGEC 612 FARM BUSINESS MANAGEMENT II**
Methods of Farm Management Investigations, farm business survey, measures of farm income and factors affecting farm income, methods of production. Cost analysis, estimating machinery costs, and planning efficient use of machinery. Course includes a series of farm business case studies and exercises for practical experience in the preparation of budgets, cash flow statements, investment appraisals, etc. Farm office procedures. Strategic Business Policy and Planning of Farm Business. Farm Management Research for small Farmer Development.

**AGEC 613 AGRICULTURAL TRADE I: INTERNAL**

**AGEC 614 AGRICULTURAL TRADE II: INTERNATIONAL**

**AGEC 615 AGRICULTURAL FINANCE**
Part 1: Issues of financing the agricultural sector; financial management on farms, including savings mobilization, liquidity management, financial evaluation of agricultural investment; credit
appraisal and management, financial reporting, domestic and foreign lending policies, agricultural credit institutions and rural finance institutions; characteristics of agriculture in relation to its financing: costs, risks and returns in agricultural finance, organization and practice of agricultural credit institutions.

**Part II:** Monetary issues at the national and international levels which relate more directly to agriculture and the problems of financing a rural economic development. Special attention is paid to the determinants of savings and investment; the role of credit institutions in both developed and developing countries; ownership and business forms; taxation and tax planning.

**AGEC 616 PRODUCTION ECONOMICS**
Overview of neoclassical production theory, including agricultural production functions; homogeneity of production functions; elasticity of substitution and response to relative input prices; cost and supply functions; production through time and economic aspects of durable inputs; economies of size and their implications for farms; production under risk and uncertainty; the new farm household economics. A typology of farm household models. Application of Production Economics to the management of Agro-industries in Ghana.

**AGEC 617 RESOURCE ECONOMICS**

**AGEC 618 ENVIRONMENTAL ECONOMICS**

**AGEC 620 SEMINAR II**

For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**AGEC 621 AGRICULTURAL INSTITUTIONS**

Institution building for development: theories, concepts and issues. Review of Institutions-building experiences in developing countries type and function: finance, cooperation, marketing, land, human resources, etc. Managing development programmes and projects; interventions to enhance management capacities; lessons from case studies. International institutions in agriculture.

**AGEC 622 PROJECT ANALYSIS AND MANAGEMENT**

General project framework and welfare theory; the project cycle; aspects of project preparation and analysis; problems of agricultural project analysis; identification of costs and benefits and measurement problems; financial analysis; measures of project worth; guidelines for project report preparation; project implementation, control and management; project case studies/project visits.

**AGEC 623 OPERATIONS RESEARCH I**


**AGEC 624 OPERATIONS RESEARCH II**


**AGEC 625 DOMESTIC AGRO-INDUSTRIAL MANAGEMENT**


AGEC 626 INTERNATIONAL AGRO-INDUSTRIAL MANAGEMENT

AGEC 627 QUANTITATIVE METHODS FOR BUSINESS

AGEC 628 AGRICULTURAL LAW

AGEC 629 FOREIGN LANGUAGE
AGEC 631 SPECIAL STUDY I (The content depends on the special needs of the candidate).
AGEC 632 SPECIAL STUDY II (The content depends on the special needs of the candidate).
DEPARTMENT OF AGRICULTURAL EXTENSION

The Department offers M.Phil., M. Agric. and Ph.D. programmes in Agricultural Extension

YEAR I

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEX 601</td>
<td>Theoretical foundation of Extension 3</td>
</tr>
<tr>
<td>AGEX 602</td>
<td>Statistics for Development 3</td>
</tr>
<tr>
<td>AGEX 603</td>
<td>Extension Programme Development 3</td>
</tr>
<tr>
<td>AGEX 604</td>
<td>Management and Organizations in Development 3</td>
</tr>
<tr>
<td>AGEX 605</td>
<td>Research Methods 3</td>
</tr>
<tr>
<td>AGEX 607</td>
<td>Extension Methods 3</td>
</tr>
<tr>
<td>AGEX 608</td>
<td>Comparative Extension Systems 3</td>
</tr>
<tr>
<td>AGEX 609</td>
<td>Communication in Extension 3</td>
</tr>
<tr>
<td>AGEX 610</td>
<td>Seminar I 3</td>
</tr>
<tr>
<td>AGEX 614</td>
<td>Rural Sociology 3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

12 Credits to be selected from under-listed courses in consultation with the Departmental Advisory Committee and Head of Department

<table>
<thead>
<tr>
<th>Elective Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEX 606</td>
<td>Education and Training 3</td>
</tr>
<tr>
<td>AGEX 611</td>
<td>Design and production of media for extension training. 3</td>
</tr>
<tr>
<td>AGEX 612</td>
<td>Topical Issues in Extension and rural Development 3</td>
</tr>
<tr>
<td>AGEX 615</td>
<td>Rural Development 3</td>
</tr>
<tr>
<td>AGEX 616</td>
<td>Gender Planning and Development 3</td>
</tr>
<tr>
<td>AGEX 617</td>
<td>Micro-finance and Micro-enterprise Development 3</td>
</tr>
</tbody>
</table>
This is a twelve to fifteen month demand-driven programme of course work plus a long essay. Courses are selected from the existing M.Phil. courses. The courses are selected with the approval of the student’s Advisory Committee, Head of Department and the organization sponsoring the student and will cater for the specific needs of the student.

**COURSE DESCRIPTIONS**

**AGEX 601 THEORETICAL FOUNDATION OF EXTENSION**

**AGEX 602 STATISTICS FOR DEVELOPMENT**
Basic concept in descriptive statistics: What is statistics? notion of central tendency, dispersion, correlation and causation, concepts in inferential statistics, ideas on population and sampling. Accessing, handling and managing quantifiable data; types of data for statistics, variability and types of variables, data collection methods, quantifying qualitative data (categorization, coding, scale development etc.).

Statistical testing and analysis; variability of scores, choice of statistical test, levels of significance, sampling distribution and sample size, the decision to accept or reject, reliability and validity issues in measurement and testing. Determining relationships and associations: Non-parametric tests, parametric tests, one-sample case, two-sample case, k-sample case, related or matched samples, independent samples, nominal/categorical, ordinal/ordered, interval/ratio variables. Presentation and interpretation of statistical results and findings: Data entry and use of statistical programmes, descriptive statistics, tables, plots and bar charts, pie charts, graphs etc., cross-tabulations, correlation etc.

**AGEX 603 EXTENSION PROGRAMME DEVELOPMENT**
Directive and Non-Directive Approaches to Extension Programme Development. Influence of Policy on Extension Programmes. Types and forms of Extension Programmes; Goals of
Extension; Programmes: economic growth, empowerment, rural development, integrated development, agricultural development; renewable natural resources management. Characteristics of extension programmes; Stages of Extension Programmes; Extension Programmes and the Project Cycle; Projects and activities as components of Extension Programmes; Extension Programme implementation; Monitoring and Evaluating Extension Programmes. Types and approaches to Evaluation of Extension Programmes; Uses of Evaluation of Extension Programmes.

AGEX 604 MANAGEMENT AND ORGANIZATIONS IN DEVELOPMENT
Approaches to organisation theory and behaviour, and external factors influencing organizational growth and development. Concept of organisation renewal. Organizational Development; Issues in organization structures and design: Centralization. Decentralization, complexity/Control; Span of control; Bureaucracy/Adhocracy, Measures of organisational effectiveness; Review of functions and tasks of managers or management staff; Leadership, power, authority, and communication in organisation; Planning to meet clients; needs; Goals and needs; Motivation and performance; Organisational learning - Single loop and Double loop; Stress and conflict management.

AGEX 605 RESEARCH METHODS
Nature and importance of Social Science research; Principles and theories of Social Research: Approaches to Social Research; Designing social Research; problem identification, topic selection, research questions. Qualitative and Quantitative Research; Validity and Reliability in Social Research; Research Methodologies: data collection, analysis, measurement, interpretation, application; Participatory Research Methodologies; Research report writing; Ethics of social research. Thesis as a research report

AGEX 606 EDUCATION AND TRAINING
The Concepts of education and training; Differences between general education and training in agriculture; Traditional versus modern education; The concept of Learning and education; Theories of learning and teaching; Principles of adult learning. Historical perspectives on adult learning; Continuity of human experience, impact of individual educators and others, impact of institutions and organisations, Socialization process, Participatory training, Participatory Learning and Action.

Agricultural education in Ghana: - characteristics and actors influencing agricultural education and training development in Ghana, different levels of agricultural training and their roles in agricultural development.

Curriculum process: - defining needs, setting objectives, selecting content and methods, evaluation; Management of agricultural education and training institutions and programmes; Intellectual investment into the agricultural industry.

AGEX 607 EXTENSION METHODS
Classification of extension methods; analysis and comparison of different extension methods; selecting extension methods - adoption process and the suitability of different methods for each stage, suitability of methods for the nature of message; selection of extension methods physical possibilities, spatial distances, timeliness/urgency, resource availability to the extension agency; educational campaigns and extension methods. Individual Extension Methods; Group Extension

AGEX 608  COMPARATIVE EXTENSION SYSTEMS
Comparative analysis and its objectives and importance; Historical background to development of extension. Contribution of Agricultural Extension to Agricultural and Rural Development; Potential of Agricultural Extension in Developing countries. Major problems and issues in improving extension effectiveness. Main characteristics of different extension Approaches: the general agricultural extension, commodity specific system, Training and Visit, participatory approach, project approach, farming systems development approach, educational institution approach. Cost sharing/recovery in extension; Problems in comparative analysis: the changing concept and meaning of extension; Inter-dependency of the agricultural development sub-systems, multiplicity of systems, complexity of internal and external factors that influence extension success, lack of available data; Establishing criteria for comparative analysis.


AGEX 609  COMMUNICATION IN EXTENSION
Importance of Communication in extension activities; Human communication and the implications for extension work; Theories and models of communication; Relevance of these concepts to (1) individual face-to-face, (2) individual to group/mass, (3) individuals within a group (4) within sub-systems in an organisation; communication situations; communication strategies for extension and rural development; Public Relations; Role of Media in society - the theoretical perspectives; Media use in rural extension - principles of media production; Audience needs and topic research; Systems of production; Media design and pre-testing; Planning communication support for extension and social development programmes; Importance of traditional communication processes in the transmission of new knowledge; Language issues in communication: Presentation skills.

AGEX 610  SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.
AGEX 611 DESIGN AND PRODUCTION OF MEDIA FOR EXTENSION TRAINING
Introduction to group project. Media analysis in relation to audience characteristics and needs. Audience and topic research: discussion with topic specialists and other relevant sources. Designing draft media, presentation of draft media; pre-testing, multiplication and distribution.

AGEX 612 TOPICAL ISSUES IN EXTENSION AND RURAL DEVELOPMENT
Design to provide in-depth study of topical problems in extension practice selected from the areas of current concern to practitioners in extension.

AGEX 614 RURAL SOCIOLOGY

AGEX 615 RURAL DEVELOPMENT
Concept and theories of Development; Characteristics of rural communities; The nature of rural problems and points of intervention; Approaches to rural Development; the role of extension in rural development; Government policies and rural development; Case study of rural Development in Ghana.

AGEX 616 GENDER PLANNING AND DEVELOPMENT
Gender roles. Approaches to gender and development, Practical and strategic gender needs and the state. Policy approaches to women in development. Policy and planning. Gender Planning. Training strategies for gender planning. Importance of women’s organisations. Gender planning and development.

AGEX 617 MICRO-FINANCE AND MICRO-ENTERPRISE DEVELOPMENT

AGEX 620 SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her
Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

DEPARTMENT OF ANIMAL SCIENCE

The Department offers M.Phil., M.Agric. and Ph.D. programmes in the following areas:

Animal Breeding
Meat Science and Technology
Microbiology and Immunology
Nutrition
Physiology, and
Pasture and Range Management

YEAR I

ANIMAL BREEDING

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 617</td>
<td>Quantitative Genetics</td>
</tr>
<tr>
<td>ANIM 618</td>
<td>Statistical Genetics</td>
</tr>
<tr>
<td>ANIM 620</td>
<td>Experimental Design</td>
</tr>
<tr>
<td>ANIM 623</td>
<td>Population Genetics</td>
</tr>
<tr>
<td>ANIM 630</td>
<td>Advanced Biometry</td>
</tr>
<tr>
<td>ANIM 640</td>
<td>Seminar I</td>
</tr>
</tbody>
</table>

ELECTIVES
4 – 14 Credits from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 613</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CROP 616</td>
<td>Principles of Genetic Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>ANIM 609</td>
<td>Biotechnology in Animal Science</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 610</td>
<td>Independent Study</td>
<td>4</td>
</tr>
</tbody>
</table>

MEAT SCIENCE AND TECHNOLOGY

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 607</td>
<td>Nutritional Physiology</td>
</tr>
<tr>
<td>ANIM 611</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>ANIM 619</td>
<td>Special Anatomy</td>
</tr>
<tr>
<td>ANIM 620</td>
<td>Experimental Design</td>
</tr>
<tr>
<td>ANIM 622</td>
<td>Meat Science &amp; Technology</td>
</tr>
<tr>
<td>ANIM 640</td>
<td>Seminar I</td>
</tr>
</tbody>
</table>

ELECTIVES (4 – 16 Credits From)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 603</td>
<td>Cardiovascular and Digestive Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 609</td>
<td>Biotechnology in Animal Science</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 610</td>
<td>Independent Study</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 624</td>
<td>Growth and Development</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 630</td>
<td>Advanced Biometry</td>
<td>4</td>
</tr>
</tbody>
</table>

MICROBIOLOGY AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 611</td>
<td>General Microbiology</td>
</tr>
</tbody>
</table>
ANIM 612   Special Microbiology  4
ANIM 613   General Immunology  4
ANIM 614   Special Immunology  4
ANIM 620   Experimental Design  4
ANIM 640   Seminar I  3

**ELECTIVE COURSES**
4 – 16 Credits From:

ANIM 604   Endocrinology and Reproductive Physiology  4
ANIM 609   Biotechnology in Animal Science  4
ANIM 610   Independent Study  4
ANIM 630   Advanced Biometry

**NUTRITION**

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 607</td>
<td>Nutritional Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 608</td>
<td>Applied Animal Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 615</td>
<td>Advanced Pasture Management</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 620</td>
<td>Experimental Design</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 640</td>
<td>Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

**ELECTIVE COURSES**
8 – 16 Credits from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 603</td>
<td>Cardiovascular &amp; Digestive Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 609</td>
<td>Biotechnology in Animal Science</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 610</td>
<td>Independent Study</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 616</td>
<td>Rangeland Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 622</td>
<td>Meat Science and Technology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 630</td>
<td>Advanced Biometry</td>
<td>4</td>
</tr>
</tbody>
</table>

**PHYSIOLOGY**

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 603</td>
<td>Cardiovascular and Digestive Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 604</td>
<td>Endocrinology &amp; Reproductive Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 605</td>
<td>Sexual Behaviour &amp; Adaptative Physiology</td>
<td>3</td>
</tr>
<tr>
<td>ANIM 606</td>
<td>Respiratory and Renal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>ANIM 619</td>
<td>Special Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANIM 620</td>
<td>Experimental Design</td>
<td>4</td>
</tr>
<tr>
<td>ANIM 640</td>
<td>Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

**ELECTIVE COURSES**
4 – 16 Credits From:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM 607</td>
<td>Nutritional Physiology</td>
<td>4</td>
</tr>
</tbody>
</table>
ANIM 609  Biotechnology in Animal Science  4
ANIM 610  Independent Study  4
ANIM 624  Growth and Development  4
ANIM 630  Advanced Biometry  4

PASTURE AND RANGE MANGEMENT

Core Courses
ANIM 607  Nutritional Physiology  4
ANIM 608  Applied Animal Nutrition  4
ANIM 615  Advanced Pasture Management  4
ANIM 616  Rangeland Ecology  4
ANIM 620  Experimental Design  4
ANIM 640  Seminar I  3

ELECTIVE COURSES
4 – 16 Credits from:
CROP 603  Environmental Plant Physiology  3
GEOG 604  Remote Sensing & Geographical Information System  3
BOT 614  Population Ecology  4
ANIM 610  Independent Study  4
ANIM 621  Livestock in Agroforestry  4
ANIM 630  Advanced Biometry  4

YEAR II
ANIM 600  Thesis  30
ANIM 650  Seminar II  3

M.AGRIC. WITH SPECIALIZATION IN ANIMAL SCIENCE

This is a twelve-month demand-driven programme of course work plus a long essay

Courses are selected from the existing M.Phil courses. The courses are selected with the approval of the student’s Advisory committee, Head of Department and the organization which sponsored the student and will cater for the specific needs of the student.

COURSE DESCRIPTIONS

ANIM 603  CARDIOVASCULAR AND DIGESTIVE PHYSIOLOGY
Pre-requisite:  ANIM 308 or Equivalent
Description:  Composition and functions of blood, Haemostatic mechanisms; Heart and circulation; Physiologic anatomy of the digestive systems of Ruminants and Monogastrics; motility and secretions of the GI tract; digestion and absorption of carbohydrates, proteins and fats. Digestive system of the chicken.
ANIM 604  ENDOCRINOLOGY AND REPRODUCTIVE PHYSIOLOGY
Pre-requisite: ANIM 409 or Equivalent
Description: Hypothalamus and releasing factors; Pituitary hormones; Thyroid gland and its secretions; Parathyroid and calcium regulation; Hormones of the adrenal glands; Pancreatic hormones; male and female reproductive organs of live-stock; spermatogenesis and oogenesis; pregnancy and parturition; mammary glands and lactation; puberty.

ANIM 605  SEXUAL BEHAVIOUR AND ADAPTATIVE PHYSIOLOGY
Requisite: ANIM 409 or Equivalent
Description: Courtship behaviour in livestock; signs of heat; measurements of intensity of sexual behaviour; Hormonal control of sexual behaviour; effects of high and low ambient temperatures on livestock; response of livestock to heat and cold; Heat tolerance tests; effects of photoperiod on livestock.

ANIM 606  RESPIRATORY AND RENAL PHYSIOLOGY
Pre-requisite: ANIM 308 and ANIM 409 or Equivalent
Description: Physiologic anatomy of the respiratory system; Pulmonary mechanics; Gas transport and exchange; regulation of respiration; Hypoxia; physiologic anatomy of the Urinary system, plasma clearance; formation of urine; water balance; Acid-base balance.

ANIM 607  NUTRITIONAL PHYSIOLOGY
Pre-requisite: ANIM 405

ANIM 608  APPLIED ANIMAL NUTRITION
Pre-requisite: ANIM 405

ANIM 609  BIOTECHNOLOGY IN ANIMAL SCIENCE
Pre-requisite: Level 600 Standing in Animal Science or Zoology.
Description: Theory and practice of biotechnology techniques in animal production.
ANIM 610  
INDEPENDENT STUDY:  
Pre-requisite:  
Level 600 Standing in Agriculture or Science, or consent of Head of Department in consultation with the Department’s Graduate Advisory Committee.  
Description:  
Directed library research on a specific area in Animal Science.

ANIM 611  
GENERAL MICROBIOLOGY:  
Pre-requisite:  
ANIM 206  
Description:  

ANIM 612  
SPECIAL MICROBIOLOGY:  
Pre-requisite:  
ANIM 206  
Description:  
Host-parasite relationships. Infection, disease and pathogenicity: determinants of microbial pathogenicity. Important pathogenic bacteria, protozoa, rickettsia, viruses and mycoplasma, and common diseases in animals and man. Clinical and pathologic manifestations of viruses, bacteria, protozoa, fungi, etc. Zoonotic diseases and microbial aetiology. Microbes in agriculture, food processing and medicine. Microbes and biotechnology. Recent advances and developments in microbiology. Special essays in applied microbiology.

ANIM 613  
GENERAL IMMUNOLOGY  
Pre-requisite:  
ANIM 206  
Description:  
Innate and acquired immunity; cellular interactions in the immune response; antigens, antigen recognition and the immune response. Immunity, immune response and immuno-deficiency disease. Immunoglobulins - structural and biological functions. Theories of antibody production - clonal selection theory, etc. Significance of antigen antibody interactions; Serology – precipitation in gels; agglutination reactions, complement-fixation, etc.: sero-diagnosis and immuno-prophylaxis. Complement, complement activation and the immune response. Hypersensitivity and the immunological basis of allergy; tissue damage by immunological mechanisms. Immunotherapy and immuno-control; vaccine and principles of vaccine production.

ANIM 614  
SPECIAL IMMUNOLOGY:  
Pre-requisite:  
ANIM 206  
Description:  
Overview of innate and acquired immunity. The cellular, chemical and humoral basis of the immune response. Humoral and cell-mediated immunity; cellular cooperation in the immune response; cellular and soluble mediators (cytokines) of the immune response – interferon, interleukins,
tumour necrosis factors, etc. Mitogens and T-cell activation. The genetic basis of antibody diversity. Microbes and parasites in the immunized host, various mechanisms of survival. Immunity to microbial and parasitic diseases – immuno-deficiency and autoimmune diseases. Transplantation and tissue/organ/graft rejection. Recent Immunodiagnostic methods in parasitic and microbial infections; immunodiagnosis and immunopathogenesis of microbial diseases/infections. Monoclonal antibody production; monoclonal antibody – based immuno-assays. Recent developments and advances in immunology.

ANIM 615: ADVANCED PASTURE/RANGE MANAGEMENT
Pre-requisite: ANIM 406

ANIM 616 RANGELAND ECOLOGY
Pre-requisite: ANIM 405

ANIM 617 QUANTITATIVE GENETICS
Pre-requisite: ANIM 410 and 413 or equivalent Statistical course for 413.
Description: Quantitative genetic theory in Animal Breeding. Population genetics, Hardy-Weinberg law and effects on sex-linkage and linkage disequilibrium, effects of selection etc. on finite population size. Interaction of quantitative traits that are jointly influenced by the environment, simultaneous segregation of many genes.

ANIM 618 STATISTICAL GENETICS
Pre-requisite: ANIM 601, ANIM 617, plus computer literacy.
Description: Advanced training in mathematical aspects of quantitative genetic theory as applied to animal breeding, linear models, [estimation of] genetic evaluation of livestock. These will be aided by appropriate computer programmes and statistical packages.

ANIM 619 SPECIAL ANATOMY
Pre-requisite: ANIM 308 or Equivalent
Description: Anatomy of endocrine glands, pituitary, thyroid, parathyroid, pancreas and adrenal glands, microanatomy of muscles; gross anatomy and structure of the heart and blood vessels; the digestive system of ruminants and non-ruminants, respiratory system, renal system and the reproductive system; the digestive respiratory, renal and reproductive systems of the chicken.
ANIM 620  EXPERIMENTAL DESIGN  
Pre-requisite:  ANIM 413 or Equivalent  

ANIM 621  LIVESTOCK IN AGROFORESTRY  
Pre-requisite:  600 Level standing in Agriculture or Science.  
Description:  History and Principles of Agroforestry, livestock husbandry problems associated with Agroforestry.

ANIM 622  MEAT SCIENCE AND TECHNOLOGY  
Pre-requisite:  ANIM 414 or Equivalent.  
Description:  Muscle growth and development, factors regulating muscle growth, fat development, muscle composition and contraction. Conversion of Muscle to meat, factors influencing post mortem changes, properties of fresh meat, storage and preservation of meat.

ANIM 623  POPULATION GENETICS  
Pre-requisite:  ANIM 306  

ANIM 624  GROWTH AND DEVELOPMENT  
Pre-requisite:  ANIM 308, ANIM 412 or Equivalent.  
Description:  Growth of cells, hyperplasia and hypertrophy; foetal and postnatal growths; growth curves; genetic influence on growth; environmental factors affecting growth. Role of hormones in growth.

ANIM 630  ADVANCED BIOMETRY  
Pre-requisite:  ANIM 413 or Equivalent  

ANIM 640  SEMINAR I  
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

ANIM 650  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.
The Department offers M.Phil. (Crop Science), M. Agric. (Crop Science) and Ph.D. programmes in the following areas of specialization

Agronomy
Genetics & Plant Breeding
Crop Protection
Plant Pathology
Entomology*

**YEAR I**

**AGRONOMY**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 601</td>
<td>Advanced Agronomy</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 602</td>
<td>Plant Nutrition</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 603</td>
<td>Environmental Plant Physiology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 604</td>
<td>Plant Growth &amp; Development</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 650</td>
<td>Seminar I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 691</td>
<td>Research Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 692</td>
<td>Biometry</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

**GENETICS & PLANT BREEDING**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 611</td>
<td>Quantitative Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 612</td>
<td>Crop Improvement</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 613</td>
<td>Molecular Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 650</td>
<td>Seminar I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 691</td>
<td>Research Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 692</td>
<td>Biometry</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

**CROP PROTECTION**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 602</td>
<td>Agricultural pests</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENTO 604</td>
<td>Insecticide Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENTO 612</td>
<td>Insect Pests &amp; Vector Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 621</td>
<td>Vertebrate Pests</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 623</td>
<td>Advanced Weed Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 631</td>
<td>Plant Pathogens</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 632</td>
<td>Advanced Plant Pathology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CROP 650</td>
<td>Seminar I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 691</td>
<td>Research Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CROP 692</td>
<td>Biometry</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
## PLANT PATHOLOGY

### Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 632</td>
<td>Advanced Plant Pathology</td>
<td>4</td>
</tr>
<tr>
<td>CROP 633</td>
<td>Plant Mycology and Fungal Diseases</td>
<td>3</td>
</tr>
<tr>
<td>CROP 634</td>
<td>Plant Disease Control</td>
<td>3</td>
</tr>
<tr>
<td>CROP 650</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>CROP 691</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>CROP 692</td>
<td>Biometry</td>
<td>3</td>
</tr>
</tbody>
</table>

### ENTOMOLOGY (See details in INSECT SCIENCE PROGRAMME)

**The Entomology courses are offered under the Insect Science Programme, an international inter-faculty programme between the College of Agriculture and Consumer Sciences and Faculty of Science with Crop Science and Animal Biology and Conservative Science as collaborating Departments. For details, see Insect Science Programme.**

### ELECTIVES

Elective courses may be selected in consultation with the Advisory Committee and the Head of Department. These may include courses taught in other Departments not listed here. (N.B. Not all-elective courses may be available in any year)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 614</td>
<td>Population Genetics &amp; Evolution</td>
<td>3</td>
</tr>
<tr>
<td>CROP 615</td>
<td>Plant Tissue Culture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 616</td>
<td>Principles of Gene Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>CROP 622</td>
<td>Weed Ecology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 630</td>
<td>Molecular Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 635</td>
<td>Seed Pathology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 636</td>
<td>Plant Bacteriology and Bacterial Diseases</td>
<td>3</td>
</tr>
<tr>
<td>CROP 637</td>
<td>Plant Virology and Viral Diseases</td>
<td>3</td>
</tr>
<tr>
<td>CROP 638</td>
<td>Plant Nematology and Nematode Diseases</td>
<td>3</td>
</tr>
<tr>
<td>CROP 641</td>
<td>Olericulture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 642</td>
<td>Advanced Pomology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 642</td>
<td>Floriculture and Landscaping</td>
<td>3</td>
</tr>
<tr>
<td>CROP 644</td>
<td>Postharvest Physiology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 651</td>
<td>Application of Plant Science to Agroforestry</td>
<td>3</td>
</tr>
<tr>
<td>CROP 652</td>
<td>Plants in Agroforestry</td>
<td>3</td>
</tr>
<tr>
<td>CROP 653</td>
<td>Agroforestry Systems &amp; Practices</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 608</td>
<td>Stored Products Entomology</td>
<td>3</td>
</tr>
</tbody>
</table>

### YEAR II

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
<tr>
<td>CROP 660</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

## MASTER OF PHILOSOPHY (HORTICULTURE)
The M.Phil (Horticulture) program makes provision for post graduate students to specialize in either production horticulture or environmental horticulture.

**YEAR I**

**PRESCRIBED CORE COURSES**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 604</td>
<td>Plant Growth &amp; Development</td>
<td>3</td>
</tr>
<tr>
<td>CROP 645</td>
<td>Floriculture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 691</td>
<td>Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>CROP 692</td>
<td>Biometry</td>
<td>3</td>
</tr>
</tbody>
</table>

**PRODUCTION HORTICULTURE**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 602 Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>CROP 641 Olericulture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 642 Advanced Pomology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 644 Post-Harvest Physiology</td>
<td>4</td>
</tr>
<tr>
<td>CROP 610 Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 603 Environmental Physiology</td>
<td>4</td>
</tr>
<tr>
<td>CROP 607 Advanced Crop Protection</td>
<td>4</td>
</tr>
<tr>
<td>CROP 615 Plant Tissue Culture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 616 Principles of Gene Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>CROP 648 Nursery Management</td>
<td>3</td>
</tr>
</tbody>
</table>

**ENVIROMENTAL HORTICULTURE OPTION**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP 646 Landscape Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 647 Landscape Design and Construction</td>
<td>4</td>
</tr>
<tr>
<td>CROP 648 Nursery Management</td>
<td>3</td>
</tr>
<tr>
<td>CROP 649 Landscape Ecology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 610 Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTN 612 Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 616 Conservation of Biological Resources</td>
<td>3</td>
</tr>
<tr>
<td>CROP 607 Advanced Crop Protection</td>
<td>4</td>
</tr>
<tr>
<td>CROP 615 Plant Tissue Culture</td>
<td>3</td>
</tr>
<tr>
<td>CROP 616 Principles of Gene Manipulation</td>
<td>3</td>
</tr>
</tbody>
</table>

**YEAR II**
MASTER OF PHILOSOPHY IN POST-HARVEST TECHNOLOGY
(FOUR SEMESTER PROGRAMME)

Core
FAPH 601 Post-harvest Losses & Loss assessment 3
FAPH 602 Post-harvest Physiology of Agricultural Produce 3
FAPH 603 Harvesting, Handling, Transportation & Storage of Agricultural Produce 3
FAPH 604 Quality Assurance 3
FAPH 605 Processing & Preservation of Agricultural Produce 3
FAPH 606 Packaging and Environmental Issues in Post-harvest. Management 3
FAPH 607 Storage Pests, Diseases and their Management 3
FAPH 611 Seminar I 3
CROP 692 Biometry 3

Electives
FAPH 608 Micro enterprise Development 3
FAPH 609 Marketing of Agricultural Produce, Food laws & Legislation 3
AGEC 615 Agricultural Finance 3
AGEC 621 Agricultural Institutions 3
AGEC 622 Project Analysis 3
AGEX 616 Gender Planning for rural development 3

YEAR II
FAPH 600 Research Project 30
FAPH 612 Seminar II 3

M. AGRIC WITH SPECIALIZATION IN CROP SCIENCE

This is a twelve-month demand-driven program of course work plus a long essay.

Courses
Courses are selected from the existing M.Phil courses. This selection is made in consultation with student’s Advisory Committee, Head of Department and the Organization sponsoring the student.
COURSE DESCRIPTIONS

CROP 601  ADVANCED AGRONOMY
Farming systems in various parts of the world their development and conditions responsible for their establishment. Large scale mechanized farming systems vs. traditional small scale. Labour intensive systems characteristic of most developing countries. Methods of building up and maintaining soil fertility - rotations, crop sequences, crop combinations, cover cropping, mulching, green manuring, composting, minimum/zero tillage. Soil and water conservation techniques. Chemical and Biofertilizers (uses of Azolla, Mycorrhiza, Rhizobia etc.) Sustainable crop production - short and longterm considerations in establishing annual (arable) and perennial (plantation) crops. Integration of livestock into cropping systems.

CROP 602  PLANT NUTRITION
Recent advances in plant nutritional physiology and soil-root nutrient interactions in relation to plant metabolism and crop yields.

CROP 603  ENVIRONMENTAL PLANT PHYSIOLOGY
Light, temperature and water as factors of the environment and their effect on plant growth and development. Pollutants and their effect on crop growth.

CROP 604  PLANT GROWTH AND DEVELOPMENT

CROP 610  INDEPENDENT STUDY
Description: Directed reading assignment in a specific area in Crop Science.

CROP 611  QUANTITATIVE GENETICS

CROP 612  CROP IMPROVEMENT

CROP 613  MOLECULAR GENETICS

CROP 614  POPULATION GENETICS AND EVOLUTION

CROP 615 PLANT TISSUE CULTURE

CROP 616 PRINCIPLES OF GENE MANIPULATION
Generation of Recombinant DNA. Plasmid vectors; Synthesis of DNA. Construction of DNA library. Analysis of recombinant DNA. Alteration of genes by mutagenesis; expression of foreign proteins in Prokaryotes and Eukaryotes. Applications of DNA technology.

CROP 621 VERTEBRATE PESTS
The concept of vertebrates as pests affecting human welfare. Bioecology and behaviour of major vertebrate pests. Vertebrate pests in agriculture, forestry, human health and recreation. Economic importance, nature of damage and control of rodents, birds, predatory mammals, big game animals and fishes in pest situations.

CROP 623 ADVANCED WEED SCIENCE
Biology of weeds. Economic importance of weeds/loss caused by weeds. Beneficial effects of weeds. Weed management - weed control measures with special emphasis on chemical, biological and integrated weed control practices. Technical principles involved in efficient herbicide usage e.g. calibration of sprayers; herbicide action in plants and in soils. Techniques for the control of specific troublesome weeds of the tropics. Advances in herbicide science and use of biotechnology in the development of herbicide resistant crops.

CROP 630 MOLECULAR PLANT PATHOLOGY

CROP 631 PLANT PATHOGENS
Fungi and their nature; reproduction and classification of fungi with emphasis on basis of classification. Fungi of economic importance, emphasis of those causing plant diseases. Evolution of fungi, Viruses and their nature; Purification and transmission of viruses. Viral Classification. Phytonematodes, their bionomics and control. Basis of classification of nematodes.
Characteristics of bacteria attacking plants. Some important bacterial plant diseases.

CROP 632    ADVANCED PLANT PATHOLOGY
Host-pathogen interactions. Development of disease in individual plants. Infection processes:

Penetration, pathogenesis - cell wall degradation, action of hormones and toxins. How plants defend themselves against pathogens (Disease resistance). Effect of pathogens on plant physiological functions: photosynthesis, respiration, transport system. Development of diseases in plant populations (Epidemics/Epiphytotics). Characteristics and categories of epiphytotics. Pathogen, host and environmental factors affecting epiphytotics, Plant disease forecasting. This course also covers techniques commonly employed in pathological work, such as diagnosis of plant diseases, collection and preservation of diseased plant materials, isolation, media preparation, inoculation, culturing etc.

CROP 633    PLANT MYCOLOGY AND FUNGAL DISEASES

CROP 634    PLANT DISEASE CONTROL

CROP 635    SEED PATHOLOGY

CROP 636    PLANT BACTERIOLOGY AND BACTERIAL DISEASES
Bacterial classification. Historical development of plant bacteriology. Nature of phytopathogenic bacteria: Some basic characteristics, geographic distribution and host range, dissemination, mode of entrance and survival, symptomatology, mechanism of disease induction, general control measures. Identification of phytopathogenic bacteria: Cultural, morphological, stain reactions, physiological and biochemical, infectivity test, Serology, phage typing etc. Some important plant bacterial diseases especially in West Africa: their importance, etiology and control.

CROP 637    PLANT VIROLOGY AND VIRAL DISEASES
Introduction to viruses, Mechanism and Evolution of plant viruses. Virus purification and

CROP 638 PLANT NEMATOLOGY AND NEMATODE DISEASES

CROP 641 OLERICULTURE
Systematics, ecology and growth, production of major fruiting and leafy vegetable, production of vegetables for export; mushroom production; post harvest handling. Discussion of current problems and research.

CROP 642 ADVANCED POMOLOGY
Fruit crop production and physiology: origin, taxonomy and botany, ecology and growth, fruit quality. Knowledge of production practices for citrus, banana, mango, avocado, pineapple, cashew and minor fruit crops of Ghana. Discussion of current problems, post harvest handling and research.

CROP 643 FLORICULTURE AND LANDSCAPING
Ornamental plants: importance classification; Theory and practice of landscaping Research in floriculture and landscaping. Recent advances in landscaping.

CROP 644 POST HARVEST PHYSIOLOGY
Discussion of the physiological effects on horticultural crops of controlled temperatures and supplemental environments or treatments. Emphasis on current problems.

CROP 650 SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

CROP 651 APPLICATION OF PLANT SCIENCE TO AGROFORESTRY
CROP 652  PLANTS IN AGROFORESTRY

CROP 653  AGROFORESTRY SYSTEMS AND PRACTICES
Farming and cropping systems. Shifting cultivation, long-bush fallow, slash and burn agriculture. Alley farming. The Taungya systems. Systems used for upland crops, lowland crops, orchard crops, perennial/orchard crops, Arable crops.

CROP 660  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

CROP 691  RESEARCH METHODS

CROP 692  BIOMETRY
DEPARTMENT OF FAMILY AND CONSUMER SCIENCES

The Department of Family and Consumer Sciences offers M.H.S. (Masters in Home Science), M.Phil and Ph.D degrees in Home Science. The programmes are designed to focus on areas of research concerned with the well-being (welfare) of individuals and families and their inter-relationships with the environment.

ENTRY REQUIREMENTS
A candidate wishing to be admitted to a programme leading to the award of the M.Phil M.H.S or Ph.D degree in Home Science must have obtained a good first degree in Home Science (Home Economics) or in a related field from the University of Ghana or any approved University. In the case of PhD, only candidates with a research Masters degree shall be considered for admission.

A candidate who does not have the requisite background but is adjudged suitable, may be admitted. Such a candidate will however, take make-up courses before embarking on the M.Phil, M.H.S or Ph.D programme.

SCHEME OF EXAMINATION
Candidates will be required to take formal courses for two semesters and be examined in a minimum of 12 credits of HOSC courses per semester. The minimum load per semester is 15 credit hours. At the end of the two semesters of course work, however, a candidate should have taken at least 33 credits of graduate courses, 12 (because of HOSC 601, 602, 603 and 630) of which must be compulsory (core) courses and 21 from elective courses.

A. The compulsory (core) courses are:

HOSC 601 Research Methods in Home Science (or any
other appropriate course (e.g AGEX 605) 3
HOSC 602 Family and Environment 3
HOSC 604 Statistics for Home Scientists or any other appropriate statistics course (e.g AGEX 602) 3
HOSC 630 Seminar I 3
HOSC 640 Seminar II 3

The elective courses will be selected from the area of specialization and from a related area. In addition, candidates will be required to work on a relevant research project and write a thesis on it.

The Areas of Specialization are:
- Food Utilization and Community Nutrition.
- Child and Family Studies.
- Women and Development and Family Welfare.
- Textiles and Clothing.
- Family Resources Development and Management.

YEAR 1

B. FOOD UTILIZATION AND COMMUNITY NUTRITION

Electives
21-42 credits selected from the underlisted courses and from other areas in consultation with the Supervisory Committee and the Head of Department.

Core Courses
HOSC 605 Special Topics Related to Consumer Foods 3
HOSC 606 Nutrition and Human Development 3
HOSC 607 Community Nutrition and Nutrition Education 3
HOSC 608 Food Product Development and Evaluation 3
HOSC 609 Nutrients and their Metabolism 3
HOSC 610 Independent Study 3
HOSC 611 Nutrition in Rehabilitation 3
HOSC 612 Malnutrition, its Assessment and Therapy 3
HOSC 613 Physical Growth and Nutrition 3
HOSC 614 Diet and Diseases 3
HOSC 615 Research Methods in Nutrition 3

C. CHILD AND FAMILY STUDIES

Electives
The elective courses may be selected either from the area of specialization and from a related area. In addition, candidates will be required to work on a relevant research project and write a thesis on it.

HOSC 610 Independent Study 3
HOSC 616 Principles and Theories of Early Child Education 3
HOSC 617  The Study of Children  3
HOSC 618  Research Methods in Child Development  3
HOSC 619  Principles of Child Guidance  3
HOSC 621  Child Guidance Practicum  1
HOSC 622  Child Development Study Tour  1
HOSC 623  Developmental Disabilities in Children and Youth  3
HOSC 624  Cross-Cultural Perspectives on Children  3
HOSC 625  Administration of Early Childhood Development Programme  3
HOSC 626  The Rights of Children and their Welfare  3

D. WOMEN AND DEVELOPMENT AND FAMILY WELFARE

Electives
The elective courses may be selected either from the area of specialization and from a related area. In addition, candidates will be required to work on a relevant research project and write a thesis on it.

HOSC 610  Independent Study  3
HOSC 627  The Role and Status of Women in Various Countries  3
HOSC 628  Issues in Family Welfare  3
HOSC 629  Development Issues and Role of Women  3
HOSC 631  Legislation and Women – Traditional & Modern  3
HOSC 632  Delivery of Services to Women and Families  3
HOSC 633  Family Planning and Population Issues  3
HOSC 634  Family Crises – Analysis of the Processes Involved  3
HOSC 635  Women, Development and Family Welfare  3
HOSC 636  Family Life Education  3

E. TEXTILES AND CLOTHING

Electives
The elective courses may be selected either from the area of specialization and from a related area. In addition, candidates will be required to work on a relevant research project and write a thesis on it.

HOSC 610  Independent Study  3
HOSC 637  Clothing and Textiles Merchandising  3
HOSC 638  Socio-Psychological Bases of Clothing and Textiles  3
HOSC 639  Clothing and Textiles Legislation/Specification  3
HOSC 641  Textile Fibres and Fabrics  3
HOSC 642  Colour and Dyeing  3
HOSC 643  Textiles and Clothing Graduate Seminar  3
HOSC 644  Testing of Textiles and Clothing  3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSC 645</td>
<td>Textiles and Clothing Production and Consumption</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 646</td>
<td>Advanced Clothing Construction</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 647</td>
<td>Advanced Pattern Drafting</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 648</td>
<td>Advanced History of Costumes</td>
<td>3</td>
</tr>
</tbody>
</table>

**F. FAMILY RESOURCE MANAGEMENT**

**Electives**

The elective courses may be selected either from the area of specialization and from a related area. In addition, candidates will be required to work on a relevant research project and write a thesis on it.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSC 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 649</td>
<td>Home Improvement for Rural Families</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 651</td>
<td>Household Equipment for the Ghanaian Home</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 652</td>
<td>Family Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 653</td>
<td>Technology for Small Scale Enterprises</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 654</td>
<td>Family Resources and Family Planning</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 655</td>
<td>Personal and Family Finance</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 656</td>
<td>Income Generation Activities/ Projects</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 657</td>
<td>Sources of Income for Rural/Urban Families</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 658</td>
<td>Poverty and the Ghanaian Family</td>
<td>3</td>
</tr>
<tr>
<td>HOSC 659</td>
<td>Credit and the Modern Family</td>
<td>3</td>
</tr>
</tbody>
</table>

**YEAR II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSC 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
<tr>
<td>HOSC 640</td>
<td>Research Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

**M. (HOME SCIENCE)**

This is a twelve-month demand-driven Programme of course Work plus a long essay.

**DESCRIPTION OF COURSES CORE COURSES**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSC 601</td>
<td>Research Methods in Home Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Any other appropriate course. Now it is AGEX 602)</td>
<td></td>
</tr>
</tbody>
</table>

**HOSC 602 FAMILY AND ENVIRONMENT**

A critical examination of family organization, division of labour, categories of households and functions. Interdependence of family unit with other social units in a changing African environment. Consideration of resources available within families and local environment concepts of human and material resources. Ecological principle and their applications to intra and inter-household resource allocation. Management of resources to achieve sustainable development for individuals and families.

**HOSC 604 STATISTICS FOR HOME SCIENTISTS**
(Any other statistics Course e.g. AGEX 602).

A. FOOD UTILIZATION AND COMMUNITY NUTRITION

HOSC 605 SPECIAL TOPICS RELATED TO CONSUMER FOODS
The course covers selected topics of current concerns regarding food safety issues which are likely to affect consumer health.

HOSC 606 NUTRITION AND HUMAN DEVELOPMENT (3 Credits)
Nutrition as related to human growth requirements throughout the life cycle - from conception to aging years.

HOSC 607 COMMUNITY NUTRITION AND NUTRITION EDUCATION
Concepts and knowledge of nutrition as applied in community and public health nutrition. Examination of current programmes in applied nutrition, local as well as international. Nutrition education to the community, skills in nutrition education, programme planning, management and evaluation.

HOSC 608 FOOD PRODUCT DEVELOPMENT AND EVALUATION
Objective and sensory techniques in the study of quality characteristics of food commodities and products as related to consumer acceptance. Food theory, techniques and technologies appropriate for home and small-scale rural food processing enterprises.

HOSC 609 NUTRIENTS AND THEIR METABOLISM
A detailed discussion of all the essential nutrients with emphasis on chemical composition, absorption, utilization, storage, functions and food sources as well as nutritional deficiency disorders.

HOSC 610 INDEPENDENT STUDY
An individualized course which may include field work or literature search on a topic or topics designed to suit the needs of the student. A term paper is required.

HOSC 611 NUTRITION IN REHABILITATION
Consideration will be given to issues of obesity, cardiovascular diseases and diabetes with emphasis on diagnosis, causes, classification, treatment and prevention.

HOSC 612 MALNUTRITION, ITS ASSESSMENT AND THERAPY
Detailed studies of principles of assessment of nutritional status with emphasis on protein-energy malnutrition: its aetiology and epidemiology, clinical features, biochemical and metabolic disorders and rehabilitation.

HOSC 613 PHYSICAL GROWTH AND NUTRITION
Food and Nutritional needs for optimum development and health is the main thrust of the course. The course will cover the patterns of growth from conception through to adolescence. Other non-nutritional factors which influence physical growth will also be highlighted. The use of
anthropometric indices in determining the nutritional status of children and current programmes for nutrition rehabilitation of malnourished children will be discussed.

**HOSC 614  DIET AND DISEASES**
Issues of diet in relation to dental caries, alcoholism, HIV/AIDS and other emerging health issues will be covered.

**HOSC 615  RESEARCH METHODS IN NUTRITION**
Emphasis will be on how to plan small scale nutrition surveys, statistical techniques in food and nutrition research, methods for evaluation of impact of food and nutrition programmes and methods for assessing nutrient composition of food items.

**B. CHILD AND FAMILY STUDIES**

**HOSC 610  INDEPENDENT STUDY**
An individualized course including field work or literature search on topics designed to suit the needs of the student. A term paper is required.

**HOSC 616  PRINCIPLES AND THEORIES OF EARLY CHILDHOOD EDUCATION**
Early childhood education: evolution, theories and principles of current programmes and development of individual philosophy.

**HOSC 617  THE STUDY OF CHILDREN**
Empirical study of physical, intellectual, social and emotional development of children; observation and/or participation in early childhood programmes.

**HOSC 618  RESEARCH METHODS IN CHILD DEVELOPMENT**
Need for research. Special problems and ethical issues in research for children. Analysis and comparison of various research designs and methodologies, selection of appropriate design and methodologies for specific research problems. Selection of appropriate data analysis procedures; proposal writing.

**HOSC 619  PRINCIPLES OF CHILD GUIDANCE**
Analyses of different techniques and strategies in child guidance.

**HOSC 621  CHILD GUIDANCE PRACTICUM**
Supervised participation in early childhood centre; guidance techniques and understanding of children. Prerequisite (HOSC 619).

**HOSC 622  CHILD DEVELOPMENT STUDY TOUR**
Visit to different early childhood development centres. Visits would be based on current issues. Keep a reflective journal.

**HOSC 623  DEVELOPMENTAL DISABILITIES IN CHILDREN AND YOUTH**
Definition of exception children. Causes, indicators and educational implications for a child’s
exceptional characteristics, Social and environmental factors that affect the child’s learning. The role of the family. Services available in Ghana and other countries, assessment centres, special schools and units.

HOSC 624 CROSS-CULTURAL PERSPECTIVES ON CHILDREN
Review of methods and results of cross-cultural research on physical, cognitive/intellection, social/emotional development of children and youth. Cross-cultural variations in child rearing practices.

HOSC 625 ADMINISTRATION OF EARLY CHILDHOOD DEVELOPMENT PROGRAMME
A study of programme organization, programme design, staffing, licensing, certification, classroom arrangements, equipments, and facilities for operating. (Field Trips required).

HOSC 626 RIGHTS OF CHILDREN AND THEIR WELFARE
Identification of children’s rights: traditional, modern. Protection of children and their rights (entitlements), Laws in Ghana relating to children. Ways in which children’s rights are denied, abused or neglected within the family, school and other concerned social institutions. Awareness of and advocacy for children’s rights.

C. WOMEN AND DEVELOPMENT AND FAMILY WELFARE

HOSC 610 INDEPENDENT STUDY
An independent course comprising field work and literature search designed to suit the needs of the student. A term papers is required.

HOSC 627 THE ROLES AND STATUS OF WOMEN IN VARIOUS COUNTRIES
Cross-cultural studies of the roles, work, social status and opportunities for women in Ghana, Guinea, Niger, Central African Republic, Burundi, Senegal, Nigeria, Kenya, India and the Western World. African women’s role in the political organization of their societies.

HOSC 628 ISSUES IN FAMILY WELFARE
An examination of the current issues in family welfare including income levels, access to resources, educational opportunities and family reproductive health issues. Family resource allocation and family decision making.

HOSC 629 DEVELOPMENT ISSUES AND ROLE OF WOMEN
Overview of the role of women - The orientation of development programmes. The involvement of women in development programme planning and implementation. Women’s contributions to development. Analysis of policies, programmes, projects and development issues that affect women.

HOSC 631 LEGISLATION AND WOMEN (TRADITIONAL AND MODERN)
An analysis of the existing laws and regulations about women and for women. The legal rights
and responsibilities of women. The Dos and Don’ts of being a woman. Taboos in the family. Examination of legal and Quasi-legal services available in a community for family welfare.

**HOSC 632 DELIVERY OF SERVICES TO WOMEN AND FAMILIES**
Types of Family services in Ghana. Providers of family services. Adequacy of family services in Ghana. Identification of needs for family services organizations (both government; and non-government) involved in providing services for women. Application of knowledge of needs of women and families, education theory in planning and organizing (process of planning)-evaluation of Services. Involvement of local leaders and policy makers.

**HOSC 633 FAMILY PLANNING AND CONTRACEPTIVE USE**
Definition of Family Planning: need for family planning from the individual, family and national perspectives. The population crisis/problem perspective. Birth control, types of contraceptives, availability and use of contraceptives.

**HOSC 634 FAMILY CRISIS – ANALYSIS OF THE PROCESSES INVOLVED**
The management of crisis situation in the Family. Consideration of Family disorganization, reorganization and change associated with various crises.

**HOSC 635 WOMEN, DEVELOPMENT AND FAMILY WELFARE**

**HOSC 636 FAMILY LIFE EDUCATION**
Boy/Girl relationships – the beginning of the family – the reproductive system. Family planning and family size in relation to resources. Consideration of issues of population and child rearing.

**D. TEXTILES AND CLOTHING**

**HOSC 610 INDEPENDENT STUDY**
Field work or library research undertaken by student in consultation with supervisor to form the basis of a term paper.

**HOSC 637 TEXTILES AND CLOTHING MERCHANDISING**
An interdisciplinary approach to the study of textiles and apparel merchandising with emphasis on the retail market, distribution of goods and merchandising methods used.

**HOSC 638 PSYCHOLOGICAL BASES OF CLOTHING AND TEXTILES**
A study of the social and psychological bases of clothing behaviour of individuals and social groups. Lecture will be related to social science theories.

**HOSC 639 CLOTHING AND TEXTILES SPECIFICATION/LEGISLATION**
A study of buyer and seller interaction before, during and after sale of goods and services.
Emphasis will be on advertising, consumer credit, availability of legal services, warranties and product standards.

HOSC 641 TEXTILE FIBRES AND FABRICS
The chemical and physical characteristics of natural and synthetic fibres, relating fibre structure to fibre properties. Suitability of fibres for consumer textile products. Methods of incorporating desirable consumer properties into fibres and fabrics.

HOSC 642 COLOUR AND DYEING
Importance of colour in product development. Performance properties and methods of attaching dyes to fibres and fabrics. The technology of dyeing and its influence on the final product.

HOSC 643 TEXTILES AND CLOTHING GRADUATE SEMINAR
Preparation and presentation of seminar based on an in-depth analysis of research literature on selected topics. A paper on the seminar topic will be required.

HOSC 644 TESTING OF TEXTILES AND CLOTHING
Comparative testing of textiles and clothing in relation to quality control. Emphasis will be on laboratory experimentation and the interpretation of test data.

HOSC 645 TEXTILES AND CLOTHING PRODUCTION AND CONSUMPTION
A study of basic processes in the production of textiles and clothing. Industry structure, government policy and consumption patterns.

HOSC 646 ADVANCED CLOTHING CONSTRUCTION
Production of knitted, crocheted and woven fabrics and relationship between design, fabric characteristics and production methods for both custom and ready-to-wear clothing. (Pre-requisite: HOSC 647).

HOSC 647 ADVANCED PATTERN DRAFTING
Comparison of design methods and their application to pattern making with emphasis on flat pattern making.

HOSC 648 ADVANCED HISTORY OF COSTUME
History of the evolution of fashion, its significance from ancient times to the present. Cultural and economic factors associated with the development, adoption and abandonment of styles (Selected Cultures will be compared with Ghana).

E. FAMILY RESOURCES DEVELOPMENT AND MANAGEMENT

HOSC 610 INDEPENDENT STUDY
Library work undertaken by student in consultation with supervisor to form the basis of a term paper.

HOSC 649 HOUSEHOLD EQUIPMENT FOR THE GHANAIAN HOME
(Pre-requisite: HOSC 403)
An overview and comparison of the state of equipment in the rural home and the urban home in Ghana. Analysis of the factors that influence the type of equipment found in Ghanaian homes. (e.g., fuel availability, economic status, tradition and culture, food habits, etc.). Characteristics and availability of various equipment for basic functions of the family in Ghana. Development of the various household equipment from very simple states to modern ones for food preparation, sewing, laundry and housekeeping. Selection, use and care of various household equipment.

HOSC 651 HOME IMPROVEMENT FOR RURAL FAMILIES
An overview of the conditions in various rural homes/communities. Students will visit several rural communities to observe and study the state of housing, sanitation, equipment, other facilities, and work organization. Students will be required to work on projects aimed at the development of ideas and items that could be transferred to rural communities to improve on the existing state. Projects must be realistic and practical bearing in mind cost, the culture and needs of the people.

HOSC 652 TECHNOLOGY FOR FAMILIES AND SMALL SCALE ENTERPRISES (APPROPRIATE TECHNOLOGY)
Collaborative strategies for identifying, developing and evaluating technology which is appropriate for needs of households and their small scale enterprises in rural/urban environments. Theories and principles of appropriate technology. Practical application of appropriate technologies. A survey of existing family or small-scale enterprises and identification of technologies in use. Analysis of state of technologies in use and what could be used to facilitate efficiency. Identification of improved technologies developed by appropriate technology centres in Ghana and elsewhere. The development of information packages which will make information easily available to enterprising Ghanaians to enhance their work. Types of appropriate technology for Food production; Food preservation.

HOSC 653 FAMILY RESOURCES MANAGEMENT
An Advanced course designed to provide students with a good understanding of the theories of Home Management Literature related to Home Management will be reviewed. Values, goals, decision-making and other factors involved in effective development and use of resources available to the family will be discussed.

HOSC 654 FAMILY RESOURCES AND FAMILY PLANNING
Family Planning and Birth Control: Environmental threats to man, the social setting, the need for family planning will be stressed and various methods of contraception will be explored. The link between family size and family resources will clearly be established. Trends in family reproductive behaviour would be explored. Rate of population growth in Ghana, Africa and the world will be examined. Relationship between family size and welfare. Review of related literature, case studies of families with large numbers of children and those with few children will also be addressed.

HOSC 655 PERSONAL AND FAMILY FINANCE
A study of the management of family finance: consideration of financial alternatives available to the family and individual finances. Topics to be covered include: budgeting, record-keeping, personal insurance, consumer credit, income tax, lending institutions, factors which influence financial decisions and factors that determine financial security.
HOSC 656  INCOME GENERATING ACTIVITIES/ PROJECTS FOR FAMILIES
An analysis of the various income generating activities of individuals and families at the household level. In depth study of the organization and financing of such activities. Development of a strategy to improve the viability of small-scale income generating activities and entrepreneurial skills.

HOSC 657  SOURCES OF INCOME FOR RURAL/URBAN FAMILIES
A study of the differences between the sources of income for families in the rural/urban areas. Emphasis will be on rural areas: farming, trading, small scale enterprises, wages and salaries. Census data will be analysed to identify income distribution in the society. Availability of various facilities in the rural/urban areas.

HOSC 658  POVERTY AND THE GHANAIAN FAMILY
The concept of poverty. The extent of poverty in the family. Acceptance, denial of poverty-review and analysis of data on poverty studies to understand the factors that contribute to a state of poverty and those that help to alleviate poverty.

HOSC 659  CREDIT AND THE MODERN FAMILY
Credit as a personal and family resource – elastic income. Types of credit available in Ghana; Advantages and disadvantages of using credit; Managing credit; Credit worthiness; Analysis of indigenous credit types.

F.  CHILD AND FAMILY STUDIES

HOSC 610  INDEPENDENT STUDY
An individualized course including field work or literature search on topics designed to suit the needs of the student. A term paper is required.

HOSC 615  PRINCIPLES AND THEORIES OF CHILD DEVELOPMENT

HOSC 617  STUDY OF INDIVIDUAL CHILD
Understanding of the principles of child behaviour and development, single child. The student will be guided in developing a growth and behaviour profile of a single child (1) By direct observations of the behaviour of the study child (2) By school and home visits and interviews.

HOSC 618  THEORIES AND RESEARCH IN EARLY CHILDHOOD EDUCATION
Analysis of contemporary and historical models, including early intervention programmes. The effect of variables such as, programming, physical environment, and teacher effectiveness on children. Research on teacher-child and teacher-parent interaction in early childhood education programmes.
HOSC 619  DEVELOPMENT AND GUIDANCE IN INFANCY, EARLY
CHILDHOOD AND ADOLESCENCE
Developmental characteristics of children from prenatal period to adolescence, with implication
for individual guidance within family and group care settings. Directed observations and
participation with children.

HOSC 621  ADMINISTRATION AND EVALUATION OF EARLY
CHILDHOOD DEVELOPMENT PROGRAMME
Programmes and staff development in early childhood development. Theories and Research
related to programme and personnel supervision and evaluation, (development). Models for
community involvement and financial resource management including grant.

HOSC 622  CHILD DEVELOPMENT STUDY TOUR OR FIELD WORK
The process and scope of professional development and the scope of professional responsibilities
in child development. Study of and visits to programmes that serve children and families with
diverse needs.

HOSC 623  DEVELOPMENTAL DISABILITIES IN CHILDREN
Theories, research, and current issues regarding typical development in children with disabilities.
Investigation of motor, social, cognitive, and communication development in the context of families and educational programmes.

HOSC 624  CROSS-CULTURAL PERSPECTIVES ON CHILDREN
Review of methods and results of cross-cultural research on physical
cognitive, language, social and emotional development of children and youth. Cross-cultural
variations in child-rearing practices.

HOSC 625  ADMINISTRATION OF PROGRAMMES FOR CHILDREN
Management principles and techniques involved in programmes for young children, including an
introduction to financial management. Emphasis on government regulations concerning child care,
personnel management, community relations and child care advocacy.

G. WOMEN IN DEVELOPMENT AND FAMILY WELFARE

HOSC 610  INDEPENDENT STUDY
An independent course comprising field work and literature search designed to suit the needs of
the student. A term papers is required.

HOSC 629  THE ROLES AND STATUS OF WOMEN IN VARIOUS
COUNTRIES
Cross-cultural studies of the roles, work: social status, and opportunities for women in Ghana,
Guinea, Niger, Central African Republic, Burundi, Senegal, Nigeria, Kenya, India and the
Western World. African women’s role in the political organization of their societies.

HOSC 631  ISSUES IN FAMILY WELFARE
An examination of the current issues in family welfare including income levels, access to
resources, educational opportunities and family reproductive health issues. Family resource
allocation and family decision making.

HOSC 632 DEVELOPMENT ISSUES AND ROLE OF WOMEN
Overview of the role of women - The orientation of development programmes. The involvement of women in development programme planning and implementation. Women’s contributions to development. Analysis of policies, programmes, projects and development issues that affect women.

HOSC 633 WOMEN, DEVELOPMENT AND FAMILY WELFARE
The Department offers M.Phil, M.Agric. and Ph.D. programmes in the following areas of specialisation:

- Soil Chemistry and Fertility
- Pedology and Landscape Processes
- Soil Physics and Conservation
- Soil Microbiology and Biochemistry
- Environmental Soil Science

Students offered admission to the Ph.D. programme may be requested to audit some Level 400 undergraduate and graduate (Level 600) courses where necessary. Masters students may also be requested to audit some undergraduate courses where applicable.

**YEAR I**

**SOIL CHEMISTRY AND FERTILITY**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 601 Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 602 Soil Fertility and Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 603 Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 604 Soil Mineralogy</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 612 Instrumentation and Methods of Soil/Plant Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 630 Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

**Electives**

9-15 credits to be selected from the underlisted courses or from other areas in consultation with the Supervisory Committee or with the Head of Department.

- SOIL 605 Soil Physics
- SOIL 606 Soil-Plant-Water Relationships
- SOIL 607 Soil Microbiology
- SOIL 608 Soil and Water Conservation
- SOIL 609 Soil Biochemistry
- SOIL 610 Independent Study
- SOIL 611 Soil Survey and Classification
- SOIL 613 Soil Genesis and Morphology
- SOIL 615 Soil Pollution and Remediation
- SOIL 617 Agricultural Systems Simulation and Modelling

**PEDOLOGY AND LANDSCAPE PROCESSES**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 601 Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 604 Soil Mineralogy</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 611 Soil Survey and Classification</td>
<td>3</td>
</tr>
</tbody>
</table>
### SOIL 612
**Instrumentation and Methods of Soil Plant Analysis** 3

### SOIL 613
**Soil Genesis and Morphology** 3

### SOIL 630
**Seminar I** 3

#### Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 602</td>
<td>Soil Fertility and Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 603</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 605</td>
<td>Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 606</td>
<td>Soil-Plant-Water Relationships</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 607</td>
<td>Soil Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 608</td>
<td>Soil and Water Conservation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 609</td>
<td>Soil Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 615</td>
<td>Soil Pollution and Remediation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 617</td>
<td>Agricultural Systems Simulation and Modelling</td>
<td>3</td>
</tr>
</tbody>
</table>

### SOIL PHYSICS AND CONSERVATION

#### Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 601</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 605</td>
<td>Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 606</td>
<td>Soil-Plant-Water Relationships</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 608</td>
<td>Soil and Water Conservation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 612</td>
<td>Instrumentation and Methods of Soil/Plant Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 630</td>
<td>Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 602</td>
<td>Soil Fertility and Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 603</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 604</td>
<td>Soil Mineralogy</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 607</td>
<td>Soil Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 609</td>
<td>Soil Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 611</td>
<td>Soil Survey and Classification</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 613</td>
<td>Soil Genesis and Morphology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 614</td>
<td>Advanced Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 615</td>
<td>Soil Pollution and Remediation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 617</td>
<td>Agricultural Systems Simulation and Modelling</td>
<td>3</td>
</tr>
</tbody>
</table>

### SOIL MICROBIOLOGY AND BIOCHEMISTRY

#### Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 601</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 603</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 607</td>
<td>Soil Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 609</td>
<td>Soil Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>SOIL 612</td>
<td>Instrumentation and Methods of Soil/Plant Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 630</td>
<td>Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 602</td>
<td>Soil Fertility and Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 605</td>
<td>Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 606</td>
<td>Soil-Plant-Water Relationships</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 608</td>
<td>Soil and Water Conservation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 611</td>
<td>Soil Survey and Classification</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 613</td>
<td>Soil Genesis and Morphology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 615</td>
<td>Soil Pollution and Remediation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 617</td>
<td>Agricultural Systems Simulation and Modelling</td>
<td>3</td>
</tr>
</tbody>
</table>

**ENVIROMENTAL SOIL SCIENCE**

**Core Courses**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 601</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 603</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 605</td>
<td>Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 612</td>
<td>Instrumentation and Methods of Soil/Plant Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 615</td>
<td>Soil Pollution and Remediation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 630</td>
<td>Seminar I</td>
<td>3</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 602</td>
<td>Soil Fertility and Plant Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 604</td>
<td>Soil Mineralogy</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 606</td>
<td>Soil-Plant-Water Relationships</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 607</td>
<td>Soil Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 608</td>
<td>Soil and Water Conservation</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 609</td>
<td>Soil Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 611</td>
<td>Soil Survey and Classification</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 613</td>
<td>Soil Genesis and Morphology</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 614</td>
<td>Advanced Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 616</td>
<td>Soils, Atmosphere and Global Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 617</td>
<td>Agricultural Systems Simulation and Modelling</td>
<td>3</td>
</tr>
</tbody>
</table>

**YEAR II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
<tr>
<td>SOIL 640</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

**M. AGRIC. WITH SPECIALIZATION IN SOIL SCIENCE**

This is a twelve-month demand-driven programme of course work plus a long essay course.

Courses are selected from those listed for the M.Phil. with the approval of the student’s Supervisory Committee, Head of Department and the sponsoring organisation. This programme is concluded with a short 3-month Dissertation.
COURSE DESCRIPTIONS

SOIL 601  RESEARCH METHODS
Experimental design, correlation and regression analysis, use of orthogonal polynomials in regression analysis, functional analysis of variance or method of orthogonal coefficient, mean separation, confounding, transforming, curve fitting techniques, computer use in statistical analysis. This course may also be taken from other Departments offering Research Methods or Biometry with contents similar to the above.

SOIL 602  SOIL FERTILITY AND PLANT NUTRITION

SOIL 603  SOIL CHEMISTRY

SOIL 604  SOIL MINERALOGY
Review of crystal chemistry and mineral structures: Types of bonding and ionic arrangements, geometry of crystal patterns, structural classification of soil minerals; Minerals in soil environment; Clay mineralogy, phyllosilicates, allophanes-imogolites; Soil mineral separations and characterisation: fractionation techniques, x-ray diffraction, infrared spectroscopy, thermal analyses, surface area; microscopic and sub microscopic techniques, Structural formula calculations; Interactions of soil minerals with microbes and natural organics; Applications of clay minerals in agriculture, industry and environmental management.

SOIL 605  SOIL PHYSICS
Composition of soils, interaction of soil and water, soil water potentials,
potential diagrams and soil water retention; Principles of water movement in soil: Darcy’s Law, distribution of water in soils, infiltration; Soil structure, physical, chemical and biological agents in soil aggregation, soil consistency and strength, effect of soil physical properties on root growth; Management of soil water: water storage in soils, soil water balance, concepts of water extraction by plant roots; Chemical transport in soils: leaching of chemicals (sorbed and non-sorbed) through the soil, mass flow and diffusion, irrigation water quality, soil salinity and its control.

SOIL 606  SOIL-PLANT-WATER RELATIONSHIPS

SOIL 607  SOIL MICROBIOLOGY

SOIL 608  SOIL AND WATER CONSERVATION

SOIL 609  SOIL BIOCHEMISTRY

SOIL 610  INDEPENDENT STUDY
Directed research on a specific area in soil science resulting in a term paper.

SOIL 611  SOIL SURVEY AND CLASSIFICATION
Principles of soil classification, soil as a population: categories and classes, single and multiple category systems, natural and technical classification, U.S.D.A. Soil Taxonomy, F.A.O legend, Charter’s (Ghana) classification system, French and other classification systems. Geomorphic processes in relation to pedogenesis and soil survey, scales and the various kinds of soil map,
detailed and reconnaissance soil surveys, soil mapping units: phases of series, associations, complexes and undifferentiated groups, stages of soil survey: work plan, preliminary studies, legends, mapping, field review, correlation and publication, cartographic principles, relationship of maps and legends benchmark soils, practical exercises in soil survey: use of basic survey equipment, base maps (topographical maps, aerial photo and satellite images), site characterisation.

SOIL 612 INSTRUMENTATION AND METHODS OF SOIL PLANT ANALYSIS
Field and laboratory methods of soil/plant analysis: sampling, sample preparation and analyses, routine and special methods of soil/plant analyses, scientific data analysis and report writing; Basic understanding of principles of photometry, spectrometry, absorbometry, microscopy and defractometry, radioisotopes, stable isotope techniques and differential thermal analyses in soil and plant studies, Design and construction of simple equipment for measuring soil and plant properties.

SOIL 613 SOIL GENESIS AND MORPHOLOGY
Geology of West Africa with particular reference to Ghana, Pleistocene geology in relation to pedogenesis, Reactions and processes in progressive soil development, plinthite, petroplinthite (pans), petroferric contact, nodules, concretions, calculations in soil formation, evaluation of mineral weathering, stability of minerals, Soil structure, genesis of soil structure, Soil micro morphology: soil sampling procedures and preparation of thin sections, basic concepts of soil thin section descriptions, role of soil micro morphology in soil research.

SOIL 614 ADVANCED SOIL PHYSICS

SOIL 615 SOIL POLLUTION AND REMEDIATION
Heavy metals and radio-nuclides in soils and sediments: definition of heavy metals, hazardous elements in soils and sediments, (cadmium, lead, zinc and iron): mining and smelting sites, landfill sites, sewage sludge; Accumulation of hazardous elements in plants; Treatment of contaminated land, radio-nuclides in the soil and the environment.

SOIL 616 SOILS, ATMOSPHERE AND GLOBALCLIMATE CHANGE
Physical and chemical properties of the atmosphere, radiatively active gases, carbon dioxide, carbon cycles, soil carbon and CO2 fluxes, carbon sequestration in soils, methane and methane flux from soil, nitrogen cycle, flux of nitrogen oxides from soils, other gases, eolian dust; Changes in global climate: trends in global mean land-air and sea surface temperatures.

SOIL 617 AGRICULTURAL SYSTEMS SIMULATION AND MODELLING
Introduction to agricultural systems analysis: systems and flow diagrams, components a system, stages of model building, types and properties of models, applied computing and simulation using DYNAMO; Crop growth models: modelling root growth and root water extraction, modelling the effects of water stress on plant growth; water production functions, Some simulation models of plant growth and cropping systems, e.g. QUEFTS, DSSAT, etc.; Simulation of climate variables: models of rainfall, temperature and radiation.

**SOIL 630 SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**SOIL 640 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**DEPARTMENT OF AGRICULTURAL ENGINEERING**

The Department offers the following programmes:

i. M.Phil
ii. M.Agric
iii. Ph.D

With specialization in Soil and Water Engineering.

**M.PHIL SOIL AND WATER ENGINEERING**

**YEAR I**
### Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEN 601</td>
<td>Agrohydrology</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 602</td>
<td>Soil and Water Conservation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 603</td>
<td>Field Surveying for Land and Water Management</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 604</td>
<td>Field Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 607</td>
<td>Farm Irrigation Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 608</td>
<td>Computer Applications</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 611</td>
<td>Engineering Research Methods / Any appropriate course</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 604</td>
<td>Remote Sensing and Geographical Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

### Electives

6 - 12 credits will be selected from the under listed and from other areas in consultation with the Departmental Advisory Committee and Head of Department.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEN 605</td>
<td>Agrometeorology</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 606</td>
<td>Land and Water Quality</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 609</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 610</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 612</td>
<td>Discharge Measurement Structures</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 613</td>
<td>Project Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEX 611</td>
<td>Rural Sociology</td>
<td>3</td>
</tr>
</tbody>
</table>

### YEAR II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEN 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
<tr>
<td>AGEN 620</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 630</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

---

**M. AGRIC. WITH SPECIALIZATION IN AGRICULTURAL ENGINEERING**

(This is a twelve month demand-driven programme of Course Work plus a long Essay)

### COURSE DESCRIPTIONS

**AGEN 601 AGROHYDROLOGY**

Role of hydrology in Agriculture. Analysis of hydrological processes such as Evaporation, Transpiration, Infiltration etc. Rainfall and Meteorological data collection; equipment descriptions for major meteorological variables, installation and maintenance, siting and operation of rain gauge networks.


**AGEN 602 SOIL AND WATER CONSERVATION ENGINEERING**

Conservation and the Environment; Erosion, Gully erosion, Sedimentation, and Control Practices,

**AGEN 603**  
**FIELD SURVEYING FOR LAND AND WATER MANAGEMENT**  

**AGEN 604**  
**FIELD ENGINEERING**  

**AGEN 605**  
**AGROMETEOROLOGY**  

**AGEN 606**  
**LAND AND WATER QUALITY**  

**AGEN 607**  
**FARM IRRIGATION SYSTEM DESIGN**  
Salinity and salinity Control. Drainage systems

**AGEN 608 COMPUTER APPLICATIONS**

This course deals with:

i. Computer operating systems,

ii. Construction and use of flow charts and algorithms to solve problems,

iii. The nature and uses of various spread sheet, software, word processing, data management, graphics, statistical and engineering software. Hands-on assignment are emphasized. Participants in the course are expected to use the computer to prepare and present their thesis.

**AGEN 609 AQUACULTURE**


**AGEN 610 INDEPENDENT STUDY**

A directed Library/Field Study/design on a specific area in Agricultural Water Management. The student should be in good standing or with the consent of the Head of Department in consultation with the Graduate Advisory Committee of the Department.

**AGEN 611 ENGINEERING RESEARCH METHODS**


**AGEN 612 DISCHARGE MEASUREMENT STRUCTURES**


**AGEN 613 PROJECT ANALYSIS**

General project concept, Project cycle, Project Preparation and analysis, problems associated with agricultural projects. Identification of costs and benefits. Financial analysis, economic analysis and measures of project worth. Project implementation, control and management. Case studies and project site visits.

**AGEN 620 SEMINAR I**

In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**AGEN 630 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

DEPARTMENT OF BIOCHEMISTRY, CELL AND MOLECULAR BIOLOGY

Programmes:
M.Phil and PhD degree programmes are available to interested candidates at the Department of Biochemistry, Cell and Molecular Biology

Departmental Requirement:
To be admitted to a graduate degree programme in Biochemistry a candidate must have obtained a good first degree in Biochemistry, Chemistry or other degree programmes with adequate biochemistry content.

YEAR 1

Core Courses
BCHM 601 Molecular Biology  3
BCHM 602 Gene Cloning and Expression  3
BCHM 610 Special Topics  2
BCHM 620 Molecular Biology Practical  2
BCHM 630 Data Analysis, Writing and Scientific Presentation I  3
FDSC 601 Experimental Design and Data Analysis  3
FDSC 630 Scientific Reporting and Presentation Techniques  3

Electives
BCHM 604 Principles and Applications of Biotechnology  3
BCHM606 Mitochondrial Biochemistry  3
BCHM 612 Neurotransmitters  3
BCHM 613 Mechanism of Action of Antimicrobial Compounds  2
BCHM 615 Signal Transduction  3
BCHM 616 Advanced Protein Biochemistry  3
BCHM 617 Advanced Enzymology  3
BCHM 618 Secondary Plant Metabolites II  3
BCHM 621 Molecular Biomarkers of pollution  3
BCHM 623 Secondary Plant Metabolites I  2

YEAR II
BCHM 600 Thesis  30
BCHM 640 Data Analysis, Writing and Scientific Presentation II  3
COURSE DESCRIPTIONS

BCHM 601  MOLECULAR BIOLOGY
General review of nucleic acids: Structure and function; DNA replication, repair and recombination, site-directed mutagenesis, transcription, including splicing, capping, polyadenylation, transcription factors, translation (regulation e.g. Operon theory). Basic concepts and techniques of DNA technology: Escherichia coli, plasmids and bacteriophages. Extraction and analysis of DNA and RNA; Enzymatic manipulation of DNA with restriction endonucleases. Southern and Northern blotting techniques; Polymerase Chain Reaction (PCR), Restriction Fragment Length Polymorphisms, DNA fingerprinting. Construction of genomic and cDNA libraries. Chemical synthesis of oligonucleotides; screening of gene libraries using radiolabeled oligonucleotides or DNA probes. Non-radioactive labeling.

BCHM 602  GENE CLONING AND EXPRESSION

BCHM 604  PRINCIPLES AND APPLICATIONS OF BIOTECHNOLOGY
Diagnositics, Genomics and Gene therapy-Preparation and uses of molecular tools for clinical diagnostics, monoclonal antibodies, enzyme-linked immunoassays (ELISA) DNA fingerprinting and PCR vaccine development, bioassays and therapeutic products derived from genetic recombinant proteins e.g. growth factors, insulin. Secondary metabolites e.g. antibiotics and anti-parasitic drugs. Uses and applications of genetic databases for human, pathogens and vectors in genetic disease diagnosis, detection and therapy. Chemical/microbial production of organic chemicals from renewable resources, bio-oxidation of gold sulfide ores in mining, treatment of biological waste in methane production (biogas), industrial enzymes e.g. proteases such as papain and amylases (brewing), immobilized enzyme, alkaline proteases (detergents). Genetically modified foods/organisms, insect pest control, transgenic plants, nutrient enrichment strategies legal/ethical issues – biosafety, benefit sharing, intellectual property rights.

BCHM 606  MITOCHONDRIAL BIOCHEMISTRY (3 Credits)
Review of mitochondrial oxidative phosphorylation: Mitochondrial ATP synthesis; the chemiosmotic theory, measurement of mitochondrial respiration, efficiency and plasticity of mitochondrial energy transduction. Defects in mitochondrial oxidative phosphorylation: Inefficiency in mitochondrial oxidative phosphorylation, proton leak (mitochondrial uncoupling) and redox slip; measurement of mitochondrial proton leak, significance of mitochondrial proton leak, mechanisms of mitochondrial proton leak, the uncoupling proteins: UCPs 1, 2, 3, 4 etc; mechanism of action, regulation and physiological importance. Functions of mitochondrial proton leak: obesity, cachexia and thermogenesis. Role of mitochondria in growth and development: Mitochondria and Ageing; theories of ageing (e. g. the rate of living theory, the free radical
theory), mitochondria and ageing, mitochondria and Apoptosis, mitochondria and eschemia reperfusion, the permeability transition pore. Mitochondria and cellular signalling: Nitric oxide and cellular regulation, superoxides and cellular regulation. Mitochondria and some common diseases: Diabetics; uncoupling proteins and diabetics, mitochondria and cancer, mitochondria involvement in parasitic diseases; HIV, Malaria, Schistosomiasis etc, Mitochondrial DNA mutations: The mitochondrial DNA, The inheritance of the mitochondrial DNA, Mitochondrial mutations and neurodegerative diseases. Mitochondria and inheritance or evolution: the African eve, mitochondria and forensic science, mitochondria and the haplogroups; the importance of the haplogroups in evolution.

**BCHM 610**  **SPECIAL TOPICS**
Long essays and seminars on current topics of interest to biochemistry.

**BCHM 611**  **PARASITE BIOCHEMISTRY AND HOST DEFENSE MECHANISM**
The life cycles and the biochemistry of causative organisms of the following tropical parasitic diseases: malaria, onchocerciasis, schistosomiasis and trypanosomiasis. Host defence mechanisms and the evasive mechanisms of parasites. Parasite antigens and antibody production.

**BCHM 612**  **NEUROTRANSMITTERS**
The structure, biosynthesis, degradation and mechanism of action of chemical messengers in the central and peripheral nervous system: e.g. acetylcholine, gamma-aminobutyrate, dopamine and the peptide transmitters. Excitatory and inhibitory neurotransmitters. Biochemical reactions and the movement of ions in the transmission of nerve impulse. Stimulus-response coupling via Ca++. Factors affecting cytosolic Ca++ concentrations; calcium ionophores; receptor- and voltage-operated calcium channels; Calcium binding proteins.

**BCHM 613**  **MECHANISM OF ACTION OF ANTIMICROBIAL COMPOUNDS**

**BCHM 615**  **SIGNAL TRANSDUCTION**
Different pathways for coupling response to stimulus, involving (i) cyclic nucleotide (ii) DAG/IP3 (III) tyrosine kinase activation (iv) phospholipase A2 activation, (v) de novo synthesis of response proteins and (vi) small inorganic molecules e.g. Nitric oxide (NO)

**BCHM 616**  **ADVANCED PROTEIN BIOCHEMISTRY**
Physical properties of protein; size, shape composition. Separation techniques: chromatography electrophoresis. Protein structure and stability; secondary, tertiary and quaternary structure; conformational dynamics, water exchange, dynamics of protein folding. Protein structure prediction: hydropathy distances, environment, interactions, fluorescence spectroscopy, Raman spectroscopy, NMR, ESR, spectroscopy.

**BCHM 617**  **ADVANCED ENZYMEOLOGY**
Steady state and pre-steady state: steady state enzyme kinetics; methods for identifying kinetic mechanisms; isotope exchange rates; multiple substrate kinetics; kinetic techniques in enzymology; stop flow methods, relaxation (temperature jump) methods; intra- and
extra cellular enzymes. Fast reactions: Application and importance to biochemistry; reactions between proteins and small molecules. Protein-ligand binding measurement; analysis of binding isotherms; cooperativity; Hill and Scatchard plots; kinetics of allosteric enzymes. Industrial production uses of enzymes; enzyme stabilization and immobilization; their effects on kinetics; enzyme reactors; type of bioreactors.

**BCHM 618  SECONDARY PLANT METABOLITES**
Natural products derived from the acetate-malonate and acetate-mevalonate pathways: biosynthesis, degradation, importance and/or bioactivity of unusual fatty acids and lipids; polyacetylenes, thiophenes, polyketides, terpenoids and steroids. Natural products derived from the shikimic acid pathway and mixed-biogenesis and nitrogen-containing natural products: biosynthesis, degradation, importance and/or bioactivity of oxygen heterocyclics, amino acid-derived compounds; alkaloids, porphyrins, purines and pyrimidines. Techniques: for isolation of secondary plant metabolites.

**BCHM 620  MOLECULAR BIOLOGY PRACTICALS**
A practical laboratory session to expose students to modern techniques and methods of isolation, purification, analysis and manipulation of genetic material of different organisms.

**BCHM 621  MOLECULAR BIOMARKERS OF POLLUTION**

**BCHM 623  SECONDARY PLANT METABOLITES I**
Compartmentation and stereochemical aspects of product biosynthesis; turnover and degradation; relation to general plant development; tissue culture and the study of secondary metabolism; secondary metabolites and their role in biochemical plant pathology and ecology.

**BCHM 630  DATA ANALYSIS, WRITING AND SCIENTIFIC PRESENTATION I**
In year 1, each student in the Department is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**BCHM 640  DATA ANALYSIS, WRITING AND SCIENTIFIC PRESENTATION II**
For year 2 each student will make a presentation after the Year I examinations on his/her thesis Research Proposal and also present a progress report midway into the second semester. In addition each student is expected to attend all Departmental seminars. These will be assessed for 3 credits.
DEPARTMENT OF BOTANY

M.PHIL PROGRAMME

The M.Phil Botany programme has 7 areas of specialization.

- Plant Anatomy
- Genetics
- Plant Ecology and Conservation
- Fungal Physiology, Soil Microbiology and Plant Pathology
- Plant Physiology
- Plant Taxonomy
- Plant Biodiversity

For each programme, there are 2 seminars, one in Year I (BOTN 650) and a second in Year II (BOTN 660)
PLANT ANATOMY

Core Courses
BOTN 601 Vegetative Plant Anatomy 4
BOTN 602 Anatomy of the Flower, Fruit and Seed 4
BOTN 603 Applied Plant Anatomy 4
BOTN 604 Cytology 4
BOTN 605 Plant Anatomical Methods 4
BOTN 661 Biometry 2

Additional courses from Ecology and Plant Taxonomy will be selected in consultation with supervisor

ECOLOGY

Core Courses
BOTN 611 Autecology 3
BOTN 612 Environmental Studies 4
BOTN 613 Ecological Methods 4
BOTN 614 Population Ecology 4
BOTN 615 Synecology 3
BOTN 616 Conservation of Biological Resources 3
BOTN 661 Biometry 2

Additional courses from other areas will be selected in consultation with supervisor

GENETICS

Core Courses
BOTN 621 Cytogenesis 4
BOTN 622 Plant Breeding and Evolution of Crop Plants 4
BOTN 623 Plant Molecular Genetics, Genetic Engineering and Biotechnology 4
BOTN 624 Genetic Resources 4
BOTN 625 Biometry for Genetics 4
BOTN 626 Linkage and Biometrical Genetics 4
BOTN 627 Population Genetics 4
BOTN 661 Biometry 2

Additional courses from other specialization will be selected in consultation with supervisor

FUNGAL PHYSIOLOGY, SOIL MICROBIOLOGY AND PLANT PATHOLOGY

Core Courses
BOTN 631 Flowering Plant Parasites of West Africa 3
BOTN 632  Introduction to Disease Management  3  
BOTN 633  Modern Trends of Fungal Plant Pathology  3  
BOTN 634  Plant Virology and Nematology  4  
BOTN 635  Physiology of Fungi  4  
BOTN 636  Modern Trends in Fungal Biotechnology  4  
BOTN 637  Microfloral Activities in Soil Ecosystem  4  

Additional courses from Plant Physiology and Genetics will be Selected in consultation with supervisor.

**PLANT PHYSIOLOGY**

**Core Courses**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTN 642</td>
<td>Plant Growth and Development</td>
<td>4</td>
</tr>
<tr>
<td>BOTN 646</td>
<td>Seed Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BOTN 647</td>
<td>Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 648</td>
<td>Plant Biochemistry</td>
<td>4</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTN 641</td>
<td>Environmental Effects on Plant Growth and Developmen</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 643</td>
<td>Photomorphogenesis</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 644</td>
<td>Quantitative plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 645</td>
<td>Plant Tissue Culture and Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 649</td>
<td>Resource Restoration, Maintenance and Germplasm</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Conservation</td>
<td></td>
</tr>
<tr>
<td>BOTN 663</td>
<td>Computer Science</td>
<td>1</td>
</tr>
</tbody>
</table>

Candidates to select any 3 additional courses form 641 to 649 as well as from Plant Pathology in consultation with Supervisor.

**PLANT TAXONOMY**

**Core Courses**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTN 651</td>
<td>Principles of Taxonomy</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 652</td>
<td>Approaches of Taxonomy</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 653</td>
<td>Taxonomic Data</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 654</td>
<td>Practical and Applied Taxonomy</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 655</td>
<td>Botanical Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>BOTN 656</td>
<td>Plant Systematics II: Gymnosperms</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 657</td>
<td>Botanical Nomenclature</td>
<td>2</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTN 602</td>
<td>Anatomy of the Flower, the Fruit and the Seed</td>
<td>4</td>
</tr>
<tr>
<td>BOTN 616</td>
<td>Conservation and Biological Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BOTN 624</td>
<td>Genetic Resources</td>
<td>4</td>
</tr>
</tbody>
</table>
PLANT BIODIVERSITY

Core Courses
BOTN 614 Population Ecology 4
BOTN 654 Practical and Applied Taxonomy 3
BOTN 664 Case studies and research reports 4
BOTN 665 Diversity in terrestrial and aquatic ecosystems 4
BOTN 667 Diversity in agro-ecosystems 3
BOTN 669 Protocols and policies on plant diversity 3
BOTN 671 Conservation methods 2
BOTN 627 Sustainable management of plant genetic resources 2

Additional courses from other MPhil Botany courses could be selected in consultation with supervisor.

YEAR II
BOTN 600 Research and Thesis 30
BOTN 660 Seminar II 3

COURSE DESCRIPTIONS

A. PLANT ANATOMY

BOTN 601 VEGETATIVE PLANT ANATOMY

BOTN 602 ANATOMY OF THE FLOWER, FRUIT AND SEED
The Flower, Concept; Structure; Origin and Development; Abscission. Palynology. Embryology. The Fruit: Definition and Classification; Fruit wall and Pericarp; Histology of the Fruit Wall; Abscission. The Seed: Seed in relation to Ovule; Embryo; Storage Tissue; Seed coat; Nutrition aspects in relation to seed development.

BOTN 603 APPLIED PLANT ANATOMY
Anatomy of timbers. Dendrochronology. Ecological plant anatomy: adaptive features of mesophytes. Xerophytes. Hydrophytes; applications; sun and shade leaves. Palynology. Embryology. Economic aspects of applied plant anatomy (Identification and classification): Taxonomic application; Phytogenetic application; Medicinal plants - pharmacognosy; Food adulterants and contaminants; Animal feeding habits; Present day wood; wood in archaeology; Wood products; Forensic applications. Pathological plant anatomy; Anatomical changes in response to pathogens and parasites. Anatomical changes in teratology.
BOTN 604  CYTOLOGY

BOTN 605  PLANT ANATOMICAL METHODS
Microscopy; Microtechnique; Photomicrography; Nomarski interference Microscopy; introduction to scanning electron Microscopy; introduction to Transmission Electron Microscopy.

B. ECOLOGY

BOTN 611  AUTOECOLOGY

BOTN 612  ENVIRONMENTAL STUDIES
BOTN 613  ECOLOGICAL METHODS
Photography; Field equipment for surveying and for measuring of meteorological factors; Field taxonomy: identification, collection for the herbarium

[An introduction to Remote Sensing Applications and GIS necessary]

BOTN 614  POPULATION ECOLOGY

BOTN 615  SYNECOLOGY

BOTN 616  CONSERVATION OF BIOLOGICAL RESOURCES

C. GENETICS

BOTN 621  CYTOGENETICS

BOTN 622  PLANT BREEDING AND EVOLUTION OF CROP PLANTS
BOTN 623       PLANT MOLECULAR GENETICS, GENETIC ENGINEERING AND BIOTECHNOLOGY


BOTN 624       GENETIC RESOURCES

The following main aspects, main levels and main stages of Genetic Resources will be treated:

BOTN 625       BIOMETRY FOR GENETICS


BOTN 626       LINKAGE AND BIOMETRICAL GENETICS

Genetic linkage: detection and measurement of linkage; genetic mapping; interference metrics. Biometrical genetics; analysis of means, variances and covariances of parental and derived populations; estimation of number of genes controlling a metric character.

BOTN 627       POPULATION GENETICS

Population genetics: Hardy-Weinberg law and evolutionary factors; inbreeding; balanced Polymorphism: genetic distances between populations.

D. FUNGAL PHYSIOLOGY SOIL MICROBIOLOGY AND PLANT PATHOLOGY
BOTN 631 FLOWERING PLANT PARASITES OF WEST AFRICA
Occurrence, distribution and biology of mistletoes (Tapinanthus spp.) dodders (Cuscuta and Cassytha spp.) witchweed (Striga spp.) and Thonningia sanguinea in West Africa. Biological, cultural and chemical control methods and their appraisal. Pre-and post-harvest diseases of selected economic crops and their control.

BOTN 632 INTRODUCTION TO DISEASE MANAGEMENT
Systematic approach to diagnosis. Epidemiology; Dynamics of interacting pathogen and host populations; Effect of biotic and Physical factors on disease. Disease forecasting and epidemic modelling. Compound and Simple Interest Disease Practical disease Management in Ghana; Major groups of chemicals used in disease control. Biological control of plant pathogenic fungi.

BOTN 633 MODERN TRENDS IN FUNGAL PLANT PATHOLOGY
Including induction of host resistance by Elicitors, Phytoalexins, Host-selective host-specific toxins. Post infectinal structures and Plant Disease Resistance. Molecular interactions between pathogen and host plants.

BOTN 634 PLANT VIROLOGY AND NEMATOLOGY
The extraction and purification of plant viruses; Viral nomenclature; The ecology and transmission of plant viruses in Ghana; Factors influencing dispersal of viruses; History of the Cocoa Swollen Shoot virus in Ghana and the importance of the virus in the economy of Ghana; virus diseases of cassava, cowpea, maize and yam in Ghana. General structure of nematodes; The soil environment and nematode activity; Parasitism of plant nematodes; The principal genera of plant-infecting nematodes; Control measures; Importance of plant nematodes in agriculture in Ghana.

BOTN 635 PHYSIOLOGY OF FUNGI

BOTN 636 MODERN TRENDS IN FUNGAL BIOTECHNOLOGY
Industrial Applications of Fungal Biotechnology.

BOTN 637 MICROFLORAL ACTIVITIES IN THE SOIL ECOSYSTEM
The soil biota; Ecology of soil bacteria, cyanobacteria, green algae and fungi; Microbial interactions and survival of the soil microflora; Microbiological processes and nutrient cycling; Root mucilages and their importance in soil; The nature and role of the rhizosphere phenomenon; Processes of nodulation and factors influencing nodulation; Bionitrogen fixation; Mycorrhizas; The importance of soil microflora in farming systems in Ghana; Techniques of soil microbiology.

E. PLANT PHYSIOLOGY

BOTN 641 ENVIRONMENTAL EFFECTS ON PLANT GROWTH AND
DEVELOPMENT
Soil as a substratum for plant growth - formation, texture, water holding capacity, incipient wilt, ion exchange, pH, permanent wilting percentage; role of water in plant growth and development - special properties of water, plant-water relations, transport of ions, water and organic materials in plants, water economy of plants, moisture stress (flooding, drought), salinity; role of light - over views of effects of quality, quantity and duration of light on plant growth and development, photo - morphogenesis); temp as a factor for plant growth and development - dormancy, germination, flowering, leaf abscission, leaf flush etc; effects of fire on soil nutrient status and plant growth, possible effects of fire on new leaf flush and stimulation of flowering; effects of pollutants on plant growth and development - 502, No (acid rain), liquid effluents HNO3, dyes, H2 50, H2 ,503 etc, heavy metals - lead (Ph), Mercury (Hg), arsenic (As) etc; effects of climate change - global warning on plant growth; dynamics of growth in single cells and whole plants.

BOTN 642 PLANT GROWTH AND DEVELOPMENT
The internal environment and plant growth and development. Methods and techniques for the extraction, separation, isolation, purification, identification and quantification of phytohormones in higher plants - auxins, gibberellins, cytokinins, ethylene and abscisic acid. Relationships between quantities of these phytohormones and physiological phenomena - eg. dormancy; leaf flush, senescence, leaf abscission etc; mechanism or mode of action of the above phytohormones.

BOTN 643 PHOTOMORPHOGENESIS
Light quality in different ecosystems - sensing of light in plants; Photoreceptors - structure and physiology of action perception of light quality and quantity, directions; photoperiodism; selected responses to light - modulation of growth, phototropism, photomovement photocontrol of flavonoid biosynthesis, Photocontrol of seed germination; genetic approach to photomorphogenesis; interaction between pigment systems.

BOTN 644 QUANTITATIVE PLANT PHYSIOLOGY
A survey of the extent to which physiological processes and their interactions can be formulated in a quantitative manner and integrated to describe and model various aspects of plant behaviour including growth and yield biophysical concepts - use of thermodynamics to explain and model osmotic relations and water movements into single cells, among different cells and in whole plants, Michaelis - Menten equation for enzyme kinetics, role of diffusion, facilitated diffusion, mass flow (actuated by osmotic pressure or potential) in translocation of elaborated substances in the phloem (phloem transport) membrane transport; dynamics of growth single cells and whole plants.

BOTN 645 PLANT TISSUE CULTURE AND BIOTECHNOLOGY
History of tissue culture, concept of totipotency, the Cell Theory of Schwan, regeneration in plants: in situ and in vitro tissue culture methodology: the tissue culture medium, shot tip and organ culture, anther culture, somatic embryogenesis, protoplast, culture, use of tissue culture in genetic conservation, rapid multiplication, somaclonal variation, mutation breeding, somatic hybridization. Gene transfer, plant transformation; tissue culture in biotechnology.

BOTN 646 SEED PHYSIOLOGY
Structure, composition of seeds; embryogenesis and storage tissue formation, regulation of seed
development; seed germination - cellular events, mobilization of storage reserves, control of mobilization; ecophysiological aspects of germination; dormancy and control of germination; agricultural and industrial uses of seeds and germination.

**BOTN 647 EXPERIMENTAL DESIGN**

Review of: variability and frequency distributions, measures of central tendency, estimation of variation, standard deviation; standard error; tests for significance; simple experimental design (single factor experiments) and analysis of variance, randomized design, randomized block complete block design; factorial experiments; a priori and a posteriori tests for significance - orthogonal comparisons Duncan’s Multiples Range (DMR) test, SNK; Correlation and Regression.

**BOTN 648 PLANT BIOCHEMISTRY**

Metabolism of lipids, carbohydrates, organic acids, phenolic compound, and proteins; nitrogen and sulphur assimilatism respiration, photosynthesis, cell wall composition; biosynthesis of lignin, phytohormones etc.

**BOTN 649 RESOURCE RESTORATION, MAINTENANCE AND GERMLASM CONSERVATION**

Exploration of the role of plant physiology in resource restoration, maintenance and germplasm conservation practices in Ghana, the biosphere reserve concept, use of physiological knowledge (orthodox and tissue culture) in: the collection, storage, maintenance, rapid multiplication (either by seeds or other propagules) and in buffer zone development etc.

**F. TAXONOMY**

**BOTN 651 PRINCIPLES OF TAXONOMY**


**BOTN 652 APPROACHES TO TAXONOMY**


**BOTN 653 TAXONOMIC DATA**

Types and sources of taxonomic data Relevance in classification. Data handling and presentation.

**BOTN 654 PRACTICAL AND APPLIED TAXONOMY**


**BOTN 655 BOTANICAL NOMENCLATURE**

Sources and applications of plant names. The international code of Botanical Nomenclature: history, principles and provisions.
BOTN 661   BIOMETRY (FOR PLANT ANATOMY, ECOLOGY, GENETICS)
2. For Genetics: Maximum likelihood method of statistical estimation.

BOTN 663   COMPUTER SCIENCE (FOR ECOLOGY, GENETICS AND PLANT ANATOMY)
Use of computers: DOS, word processing spreadsheet, database, statistical packages, introduction to programming. For Plant Anatomy and Ecology: Database for ecological, ethnobotanical and taxonomic information in the Ghana Herbarium.

G. PLANT BIODIVERSITY
Pre-requisite: BSc. (Botany) with electives in Taxonomy/Ecology or audit courses in BSc, Taxonomy and Ecology in MPhil 1.

BOTN 664   CASE STUDIES AND RESEARCH REPORTS
Case studies of terrestrial (forest and savanna), freshwater (natural and man-made) and marine ecosystems plus agro-ecosystems. Developing research reports using the case studies. Presentation and discussion of case studies.

BOTN 665   DIVERSITY IN TERRESTRIAL AND AQUATIC ECOSYSTEMS
Species identification (morphological and molecular), ecological survey techniques; data management and monitoring of ecosystems and plant genetic resources.

BOTN 666   SUSTAINABLE MANAGEMENT OF PLANT GENETIC RESOURCES

BOTN 667   DIVERSITY IN AGRO-ECOSYSTEMS
Species and varietal identification of agricultural species; social survey techniques; information management and monitoring of agro-ecosystems and plant biodiversity. Impacts of agro-ecosystems on nature especially plant biodiversity.

BOTN 669   PROTOCOLS AND POLICIES ON PLANT BIODIVERSITY
International and National protocols an policies on plant genetic resources

BOTN 671   CONSERVATION METHODS (CREDITS)
In-situ and ex-situ conservation methods for plant genetic resources. SWOT Analysis of methods for in-situ and ex-situ conservation.

BOTN 614   POPULATION ECOLOGY (See Ecology)
BOTN 654   PRACTICAL AND APPLIED TAXONOMY
(see Plant Taxonomy)
BOTN 650  SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

BOTN 660  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

DEPARTMENT OF CHEMISTRY
The Department offers M.Phil programmes in the areas of Natural Products and Analytical (Environmental/Inorganic) Chemistry
### CORE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
<tr>
<td>CHEM 610</td>
<td>Practical/Mini Project</td>
<td>8 (2)</td>
</tr>
<tr>
<td>CHEM 630</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 632</td>
<td>Further Spectroscopy and Structure Elucidation</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 634</td>
<td>Advanced Medicinal Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 640</td>
<td>Seminar 2</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 671</td>
<td>Instrumental Methods of Chemical Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

### PRESCRIBED ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 631</td>
<td>Either Synthetic Methodology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 651</td>
<td>Or Nuclear and Radiochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

### ANALYTICAL/ENVIRONMENTAL/INORGANIC OPTION

Electives (A minimum of six (6) credits from the relevant group)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 612</td>
<td>Atomic Structures and Spectra</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 614</td>
<td>Photochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 653</td>
<td>Organometallic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 601</td>
<td>Soil and Water Quality</td>
<td>3</td>
</tr>
<tr>
<td>ESCI 607</td>
<td>Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 633</td>
<td>Alkaloids</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 635</td>
<td>Terpenes</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 636</td>
<td>Steroids</td>
<td>3</td>
</tr>
<tr>
<td>ESCI 638</td>
<td>Natural Oxygen Heterocycles</td>
<td>3</td>
</tr>
</tbody>
</table>

### COURSE DESCRIPTIONS

**CHEM 612 ATOMIC STRUCTURE AND ATOMIC SPECTRA**

**CHEM 614 PHOTOCHEMISTRY**
A study of the laws and theory of Photochemistry. Topics include: the theory of the excited state, electronic spectra of excited state, transients and their behaviour, experiments techniques, photochemical processes in the gas phase, mechanisms of organic photochemical reactions, photochromism, and industrial application. Laboratory experiments give practical experience to the theory covered in class.

**CHEM 630 SEMINAR 1**
In year 1, each student in a Department or Programme is expected to attend all seminars specified
and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**CHEM 631  SYNTHETIC METHODOLOGY**
The objective of this course is three fold: To equip the graduate with the necessary theoretical tools to enable the student formulate reasonable synthetic schemes for complex organic molecules. To enable the student read and understand articles in journals on synthesis of organic molecules. To be able to bring all elements of Organic Chemistry (mechanisms, stereochemistry and strategy) to bear on synthesis. In the first part of the course a review of the major reactions in organic synthesis will be done. In the second part some selected organic molecules will be taken from current literature and the synthetic schemes will be discussed. The selection of the molecules to be discussed will be done in such a way that the student will be exposed to almost all the major reactions in organic synthesis. Finally the student will be given one selected synthetic organic chemistry topic to review and present as a theoretical project.

**CHEM 632  FURTHER SPECTROSCOPY & STRUCTURE ELUCIDATION**
Pre-requisite: CHEM 431 (2 credits) or evidence of having done an equivalent course at the undergraduate level. Electronic spin resonance spectroscopy; multi-pulse techniques in two dimensional NMR spectroscopy and their application to structure elucidation; NMR of nuclei like N-15, P-31 and F-19, biological NMR, ionisation techniques in mass spectroscopy other than electron impact

**CHEM 633  ALKALOIDS**
Occurrence, isolation, general survey of the classes of alkaloids, application of spectroscopic methods, degradative methods, synthetic methods and conformational analysis in structure elucidation; biosynthesis.

**CHEM 634  ADVANCED MEDICINAL CHEMISTRY**
Topics to be treated each year will be selected from the following: Further Pharmacokinetics. The Kinetics of drug absorption and Elimination; The Plateau Principle; first order absorption and elimination; kinetics of drugs administered by inhalation.


**CHEM 635  TERPENES**
Occurrence; isolation; general survey of the classes of terpenes; application of spectroscopic methods, degradative methods, synthetic methods and conformational analysis in structure elucidation; biosynthesis.
CHEM 636  STEROIDS
The structure and chemistry of sterols, bile acids, sex hormones, adrenal cortex hormones, steroidal glycosides, and alkaloids. Wherever necessary, the use of spectroscopic methods in the elucidation of structures, conformational analyses and the use of molecular rotation values, optical rotatory dispersion curve, and the octant rule to determine conformations.

CHEM 640  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

CHEM 651  NUCLEAR AND RADIOCHEMISTRY
Introduction to Radiochemistry; Types of Radioactive decay; Nuclear Chemistry and Mass Energy Relationships, Nuclear Reactions; Rates of nuclear decay; Interaction of Radiation with Matter, Radioisotope production and availability, Radiotracer Methods; Uses of large radiation sources; Nuclear Activation Analysis; Principles of Activation Analysis; Prompt-Gamma Neutron Activation Analysis (PONAA) and Charged Particle Activation Analysis (CPNAA); Health Physics, Radiation Chemistry.

CHEM 653  ORGANOMETALLIC CHEMISTRY
The general methods for preparing the organometallic compounds of the Main Group (Groups IA, IIA, IIIA, and IVA) elements and those of the d-transition elements. The important physical the chemical properties are discussed. Application of spectroscopic methods in determining the structure, including the nature of bonding between the metal and certain Organometallic compounds as intermediates in organic synthesis.

CHEM 671  INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS
Measurement and instrumentation; resolution, sensitivity, selectivity, detection limit; sample pretreatment techniques; detailed, consideration and applications of some selected methods e.g. AAS, AES, IR, UV, NMR, GC, GC-MS, HPLC, XRF, NAA etc.

ESCI 607  ENVIRONMENTAL CHEMISTRY
The course covers the chemical nature of the key pollutants of air, soils and freshwater and marine bodies, the effects of the pollutants in the environment and management of the pollutants. The chemistry of the major industries, and their problems in relation to the environment and the alternatives
DEPARTMENT OF EARTH SCIENCE

GRADUATE PROGRAMMES IN EARTH SCIENCE

SPECIFICATIONS
The Department of Earth Science offers research-based Master of Philosophy (MPhil) and Doctor of Philosophy (PhD) degrees in Geology in the following fields: Hydrogeology, Geochemistry, Petrology, Sedimentary Geology, Structural Geology, Geophysics, Economic Geology, Petroleum Geology and Mineral Economics. In addition, the Department offers (M.Sc) programmes by coursework in Mineral Exploration, Water Resources Development, Engineering Geology and Petroleum Geosciences. These MSc courses were set up following extensive consultation with the appropriate industry and are designed for working professionals wishing to update their knowledge or acquire new skills in their field of work.

MASTER OF SCIENCE IN PETROLEUM GEOSCIENCE

INTRODUCTION
The MSc programme is a full-time 12-month taught course that includes a dissertation. The objective of the programme is to provide advanced training in the field of Petroleum Geoscience. This objective is achieved through lectures, tutorials, hands-on exercises, laboratory practicals, seminars, field exercises, excursions and the preparation of a dissertation. The course is career-oriented and is recommended to professional earth and natural scientists who wish to either establish or consolidate a career in the petroleum geosciences. The broad-based approach also allows graduates to pursue their career options, and that includes consulting, research and personal development through pursuance of higher studies. The programme assumes that the student has a good first degree in the earth sciences or related discipline.

ENTRY REQUIREMENTS
A bachelor’s degree or equivalent in the earth sciences from a recognised university or equivalent academic institution. Admission will be competitive and applicants will be evaluated on the same criteria as the research-based MPhil in Geology.

**DURATION OF COURSE**
2 semesters (12 months)

**ASSESSMENT**
The courses will mainly be taught through hands-on exercises, laboratory practicals, mini-projects, and field exercises. Assessment of all courses will, therefore, be by continuous assessment (60%) and end-of-semester examination (40%).

**PROGRAMME STRUCTURE**
The following are the credits that a registered student is required to earn in order to graduate:

**Coursework**
- EASC 601: Introduction to Petroleum Industry and Petroleum Business
  - Credits: 3
- EASC 603: Depositional Systems
  - Credits: 3
- EASC 605: Sequence Stratigraphy
  - Credits: 3
- EASC 607: Structural Geology and Subsurface Mapping
  - Credits: 3

**Total Coursework Credits**: 12

**Seminar**
- Credits: 3

**Dissertation**
- Credits: 12

**Total Credits**: 45 – 51

**FIRST SEMESTER**

**Core**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 601</td>
<td>Introduction to Petroleum Industry and Petroleum Business</td>
<td>3</td>
</tr>
<tr>
<td>EASC 603</td>
<td>Depositional Systems</td>
<td>3</td>
</tr>
<tr>
<td>EASC 605</td>
<td>Sequence Stratigraphy</td>
<td>3</td>
</tr>
<tr>
<td>EASC 607</td>
<td>Structural Geology and Subsurface Mapping</td>
<td>3</td>
</tr>
</tbody>
</table>

**Total Core Credits**: 12

**Electives**
- (select a minimum of 3 credits)
  - EASC 609: Seismic Data Acquisition and Processing
    - Credits: 2
  - EASC 611: Petroleum Geomechanics
    - Credits: 2
  - EASC 613: Geostatistics in Petroleum Geology
    - Credits: 2
  - EASC 615: Basic Petroleum Geology (for students with little or no background in Geology)
    - Credits: 3

**SECOND SEMESTER**

**Core Courses**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 602</td>
<td>Health, Safety and Environment</td>
<td>2</td>
</tr>
<tr>
<td>EASC 604</td>
<td>Formation Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>EASC 606</td>
<td>Development Geology</td>
<td>3</td>
</tr>
<tr>
<td>EASC 608</td>
<td>Advanced Sedimentary Petrology</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>11</strong></td>
</tr>
</tbody>
</table>

**Electives (select a minimum of 4 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 612</td>
<td>Seismic Stratigraphy</td>
<td>2</td>
</tr>
<tr>
<td>EASC 614</td>
<td>Seismic Data Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>EASC 616</td>
<td>Petroleum Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>EASC 618</td>
<td>Gravity and Magnetic Survey</td>
<td>2</td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**

**EASC 600 DISSERTATION**
This is an individual study culminating in a formal dissertation. The dissertation is undertaken under the supervision of faculty. The purpose of this work is to develop and underpin a personal understanding of the fundamentals required to solve a problem. Attention will be paid to the logic and systematics needed to achieve this objective in practice. The project may commonly include a fieldwork component or may entirely consist of the analysis of raw field data from industry.

**EASC 601 INTRODUCTION TO PETROLEUM INDUSTRY AND PETROLEUM BUSINESS**
This course introduces students to basic economics and legal framework of the petroleum industry. It presents an overview of the petroleum industry, and covers the basic economics in the petroleum life cycle and the fundamentals of international oil and gas law. Topics to be covered include:

**Overview of the Petroleum Industry**
Acquisition of exploration rights; Generation of exploration prospect; Drilling and evaluation of exploration well; Establishment of commerciality; Creation of asset business plan; Initiation of facility design; Design, construction and commission of facilities; Characterization, production and exploitation of asset; Disposal or decommission of asset.

**Petroleum Economics**
Forecasting oil production; Cash flow techniques; Pricing; Production rate; Budgeting; Worldwide business operations; Performance appraisal; Ethics in economic analyses

**Petroleum Law**
Law governing international petroleum transactions; Interpretation and enforcement of treaties and private contracts; Effects of international trade (and producing country) agreements; Dispute resolution approaches; Basic legal concepts of ownership of mineral rights; Expropriation and compensation issues; Laws bearing on development rights; Environmental protection laws.

**EASC 602 HEALTH SAFETY AND ENVIRONMENT**
The course covers the basics of Health, Safety and Environment (HSE) and HES management related to the petroleum industry. Course content includes:

**Environment:** Covers air, water, waste, spills, remediation and risks, addressing the following competencies: Environmental risk management and assessment; emission limits and control;
Environmental monitoring and data management; Spill response; Site assessment, management and remediation.

**Health:** Health risk and impact assessment; Human factors engineering; Ergonomics; Health and medical emergency facilities; Fitness for duty; Food and water hygiene; Thermal extremes; Medical surveillance/Industrial hygiene.

**Safety:** Safety techniques for hazard and effect management; Process safety and hazards control; Safety culture; Chemical and biological agents; Hazard communication / product stewardship; Work environment; Fire safety; Tool safety; Machine guarding; Motor vehicle; Lifting operations and lifting equipment; Electrical safety; Noise and vibration; Radiation and radioactive sources; Construction and demolition; Excavation.

**HES Management:** Leadership and commitment; Policy and strategic objectives; Legislation and regulation; Organisation, Responsibilities and resources; Professional training and behaviours; Risk assessment and management; Planning and procedures; Contractor controls; Security; Emergency response; Performance management; Incident reporting & investigation; Audit; Management review..

**EASC 603 DEPOSITIONAL SYSTEMS**
(Siliciclastic and carbonate depositional systems form a large proportion of petroleum reservoirs and this course is designed to review the fundamentals of facies analysis needed to correctly interpret depositional processes and environments. The course will review the basic sedimentary processes and resultant structures commonly encountered in cores and outcrops. It will provide criteria for practical identification and interpretation of alluvial fan, lacustrine, fluvial, deltaic, shoreline, shelf and deep sea clastic depositional systems from outcrop, core and wireline log datasets.

**EASC 604 FORMATION EVALUATION**
This course covers the basics of well log analysis and core sample analysis. It begins by considering the nature of the borehole environment, and the way in which the drilling process may alter the properties of rocks and their contained fluids. It then covers mudlogging, and the basic physical principles behind, and operation of, the major wireline logging tools, i.e., self-potential, resistivity, gamma ray, sonic, density and neutron. Next it considers briefly the dipmeter log and finally presents and discusses how log data can be used in paleoenvironmental analysis. Hands-on exercises provide practice in the interpretation of various logs. Such interpretation ranges from identifying the lithologies and the presence of water and hydrocarbons to paleoenvironmental interpretations of logged rock sequences. The part that deals with core analysis will teach the invaluable skill of examining and describing drill core for sedimentology, reservoir quality, depositional environments and sequence stratigraphy. Sampling methods, types of sampling equipment and sedimentary rock analytical techniques, both available at the drilling rig-site and in the laboratory, are presented and discussed.

**EASC 605 SEQUENCE STRATIGRAPHY**
Sequence stratigraphy is one of the vital tools available to petroleum geologists and geophysicists as it provides a predictive framework for understanding sedimentary basin fill, and integrates seismic, wireline log, core and outcrop data. The first part of the course reviews the fundamental
principles of stratigraphy and basic processes controlling sedimentation including accommodation, sediment supply, parameters influencing changes in base level and relative sea level, and the stratigraphic patterns produced from changes in the ratio of accommodation versus sediment supply (transgressions and regressions). The second part focuses on stratigraphic patterns. The phenomenon of sedimentary cycles is investigated at various scales (cyclothems, parasequences, progradational, aggradational and retrogradational stacking patterns). The third part deals with key surfaces (unconformities, erosion surfaces, flooding surfaces, maximum flooding surfaces), depositional sequences, and depositional system tracts at various scales. The final part of the course builds a practical methodology for interpreting seismic, well log, core and biostratigraphic datasets, building the skills to prepare sequence stratigraphic frameworks that are useful for prediction of reservoir, source and seal in a petroleum system. A variety of practical exercises are used, and these form the basis of assessment.

EASC 606 DEVELOPMENT GEOLOGY
This course aims to bring together the disciplines of geology, geophysics, and reservoir engineering to provide an integrated approach to developing oil and gas fields. The primary focus of the course is on the role of the geologist in a multidisciplinary team environment. Lectures and class exercises develop a working knowledge of the concepts and tools used in field development. The various phases of a field’s history are discussed and illustrated through both case histories and problems/exercises. Topics to be covered include: Exploration (fairway recognition, prospect ranking, well location selection); Discovery and initial appraisal (well results compared and calibrated to pre-drill maps and seismic data); Primary development (compartmentalisation, reservoir properties); Full appraisal (stepout locations, reserves and net pay evaluation, aquifer delineation); Development plans (recovery efficiency, relative permeabilities, water cuts); Steps in building a geologic reservoir model; Impact on barriers on field development; Secondary and tertiary field development; Rejuvenating mature and marginal fields. In the practical sessions students create and interpret models using computer softwares.

EASC 607 STRUCTURAL GEOLOGY AND SUBSURFACE MAPPING
This course will be run as a hands-on workshop introducing the basic principles of structural geology and focusing on the main structural geometries seen on seismic data and in outcrop in the oil industry. The first part of the course will introduce the structural styles associated with extension, compression, inversion, strike-slip and salt diapirism. It will concentrate on practical methods used to define the relationships between faults, folds, sedimentary packages and regional elevation and how they can be used to validate an interpretation and hence a prospect. The second part of the course deals with basin tectonics. It first examines how basins are formed and how they are linked to the Earth’s thermal behaviour and plate tectonics. This leads to a closer look at the mechanisms whereby the crust and lithosphere can be thinned by stretching or extensional tectonics. Then the structures associated with the termination of basin formation and the deformation of their contents during crustal thickening or compressional tectonics are described and discussed. The final part involves Identification and correlation of markers in drilling and wireline logs, and stratum contour and isopach maps for structural and stratigraphic interpretation of reservoir units.

EASC 608 ADVANCED SEDIMENTARY PETROLOGY
This course aims to provide an understanding of the processes that affect sandstone reservoir quality. Sandstone composition, texture and classification and their correlation with petrophysical
properties are discussed. Clays (and XRD techniques) are covered and their potential effects on permeability are considered. Diagenetic changes to sandstones are described and illustrated by observing thin sections under the microscope during practical sessions. Advanced petrological techniques and their application to petroleum geology, is examined. The course will also discuss carbonate reservoirs and their diagenesis as a means of providing a basis for hydrocarbon exploration. Course components include: diagenesis, karst, dolomitisation, and carbonate reservoirs (where to look and how to find them). Sampling methods, types of sampling equipment and sedimentary rock analytical techniques, both available at the drilling rig-site and in the laboratory, are also presented and discussed. Practical session will involve using binocular microscopy to examine and describe drilling cuttings.

EASC 609 SEISMIC DATA ACQUISITION AND PROCESSING
This course is designed to give students with little or no background in these areas a basic understanding of the standard methods used in acquiring and processing seismic reflection data. The course begins with a brief review of elastic waves and phenomena such as reflection, refraction, diffraction and attenuation which occur as these waves propagate through the earth. The acquisition component outlines the equipment used (sources, detectors, recorders, etc.); survey design; typical acquisition procedures for land and marine surveys; and auxiliary information such as uphole and shallow refraction surveys. The processing component deals in a non-mathematical way with the processes used to convert field data to final section. In particular, velocity analysis, statics, CDP stack, deconvolution and migration will be discussed, as these are the basis of most conventional processing.

EASC 610 SEMINAR
The Research Seminar Course is intended to provide students planning a research career in Petroleum Geoscience with the opportunity to develop the skill of critically reading and evaluating research papers. The course is open to all students, and is a required component of the MSc in Petroleum Geoscience programme. The course will consist of a weekly timetabled session in which students will read, present and discuss influential research papers across a broad range of subject areas.

EASC 611 PETROLEUM GEOMECHANICS
This course covers basic rock and fault mechanics and the determination and application of in situ stress data in the oil patch. The section on basic rock mechanics covers forces, stress and strain and Mohr’s circle of stress. The section on basic fault mechanics covers failure envelopes, fault/fracture meshes, and the Andersonian classification of faults. The significance of pore pressures and law of effective stress are presented. The origin of stresses in the crust are reviewed: specifically reference states of stress, tectonic stresses, plate tectonics, and regional and local sources of stress. The course then moves specifically to the oil patch, reviewing methods for determining the in situ stress field from standard oil exploration data, specifically: overburden stress, horizontal stress orientation, borehole breakouts, drilling-induced tensile fractures, image logs, horizontal stress magnitudes, formation integrity, leak-off and hydraulic fracture tests, fracture gradient relations, and frictional limits on stress. Finally, the applications of in situ stress data in the oil patch are discussed, specifically: interpreting recent tectonic style, structural permeability, optimum development of naturally fractured reservoirs, predicting fault reactivation/seal breach, hydraulic fracture stimulation, deviated and horizontal wellbore stability.

EASC 612 SEISMIC STRATIGRAPHY
The aim of this course is to introduce students to seismic stratigraphy, which involves identifying and interpreting unconformities and other reflector terminations such as offlaps and onlaps. Topics covered in the lectures include (i) the stratigraphic significance of seismic reflectors (ii) identification of depositional sequences (iii) age determination of depositional sequences (iv) recognition and analysis of the seismic facies present in terms of reflector geometry, continuity and amplitude and mapping their distribution, and (v) interpretations of relative changes of sea-levels. Hands-on exercises provide practice in: (i) identifying examples of reflection terminations (onlap, downlap, toplap), (ii) identifying depositional sequence boundaries on seismic sections on the basis of reflector terminations, (iii) determining the age of seismic sequences using appropriate borehole data, (iv) identifying different seismic facies on seismic sections, (v) making plots of coastal onlap and constructing chronostratigraphic summary chart from suitable seismic sections or geological cross-sections.

EASC 613  GEOSTATISTICS IN PETROLEUM GEOLOGY
This course introduces the concepts and methods of spatial statistics to geologists and engineers working with oil and gas data, and covers all of the most commonly encountered geostatistical methods for estimation and simulation. Topics include calculation and modeling of semivariograms, linear methods of kriging, cokriging, nonlinear methods such as indicator kriging and disjunctive kriging, and conditional simulation, including sequential indicator simulation, sequential Gaussian simulation, and simulated annealing. Semivariogram models range from very simple to complex. The emphasis throughout is on what the practitioner needs to know, and the results that can be expected. Hands-on exercises provide practice using real-world data such as porosity and permeability, gas production, structural elevation of a reservoir, and seismic information.

EASC 614  SEISMIC DATA INTERPRETATION
The aim of this course is to introduce students to the fundamentals of seismic interpretation. It therefore concentrates on structural interpretation, leaving stratigraphic issues to the Seismic Stratigraphy course. Topics covered in the lectures include time and depth sections, artificial structure caused by velocity variations, unconformities, folds, faults, piercement structures, bright spots, dim spots, polarity reversals and flat spots, time-structural maps, and seismic modelling. Practical work involves interpretation of 2D and 3D seismic data on paper. The practicals stress the effort and discipline involved in producing a self-consistent interpretation of horizons and faults.

EASC 615  BASIC PETROLEUM GEOLOGY
Primary objectives of this course are to broaden students geological vocabulary, explain selected geological principles and processes, and describe how certain petroleum reservoirs and source rocks are formed. It involves lecture and practical sessions and covers the following: Minerals and rocks; Plate tectonics; Geological times; Weathering and erosion; Deposition; Diagenesis; Reservoirs; Structural geology and petroleum; Origin, migration, and trapping of petroleum; Field mapping techniques. The course also includes an overview of the geological formations of Ghana, and a one-week field mapping, with supervision, in a sedimentary terrain.

EASC 616  PETROLEUM GEOCHEMISTRY
Development and concepts of petroleum geochemistry in petroleum exploration. Accumulation and sedimentation of organic matter. Introduction to palynology and application of biostratigraphy

EASC 618 GRAVITY AND MAGNETIC SURVEY
Gravity and magnetic methods have a limited use in basin analysis but can be used to locate major sedimentary basins and to define their limits and depths. This course discusses the density and magnetism of rocks, the Earth’s gravity and magnetic field, gravity anomalies and the interpretation of gravity and magnetic surveys. Hands-on exercises provide practice in the use of gravity and magnetic data to recognize the presence and estimate size of any sedimentary basins, and identify some features within them, such as salt domes.

MASTER OF SCIENCE IN ENGINEERING GEOLOGY

INTRODUCTION
The MSc programme in Engineering Geology target working professionals wishing to update their knowledge or acquire new skills in the field of engineering geology. The programme seeks to expose students to appreciate and understand interactions between civil engineering designs, and the subsurface. This MSc programme is a full-time one-year taught course that includes a dissertation. The broad-based approach also allows graduates to pursue their career options including consulting and research, as well as to prepare themselves for further studies at higher levels.

The curriculum includes lectures, tutorials, hands-on exercises, laboratory practicals, seminars, field exercises, excursions and the preparation of a dissertation. Practical training programmes have been designed to include tutorial visits to building and road construction project sites, dam construction and burrow material sites, mining construction projects, coastal engineering and wetland restoration sites and laboratories of institutions such as AESL, Highways and mines to mention a few. MSc in Engineering Geology is recommended also for civil engineers who wish to upgrade their knowledge in the application of the geological sciences to engineering practice.

ADMISSION REQUIREMENTS
i. The pre-requisite for this programme is a good first degree (at least a Second Class Lower Division) in the earth sciences, civil engineering or physics.

ii. Applicants with qualifications in appropriate areas of applied science, and those with other qualifications together with suitable industrial experience may also be considered.

MINIMUM AND MAXIMUM WORK LOAD
A student shall be required to carry a minimum work load of 16 credits and a maximum of 18 credits of coursework for Semester I and minimum of 14 credits and a maximum of 18 credits for Semester II.
REQUIREMENTS FOR GRADUATION
The following are the credits that a registered student is required to earn in order to graduate:

Coursework 30 – 36 Credits
Seminar 3 Credits
Dissertation 12 Credits
Total 45 – 51 Credits

FIRST SEMESTER

Core

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 621</td>
<td>Advanced Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>EASC 623</td>
<td>Advanced Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>EASC 625</td>
<td>Laboratory and Field Techniques</td>
<td>3</td>
</tr>
<tr>
<td>EASC 631</td>
<td>Case Histories in Engineering Geology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>12</strong></td>
</tr>
</tbody>
</table>

Electives (Select a minimum of 3 Credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 615</td>
<td>Field Geology (for students with little or no Geology background)</td>
<td>3</td>
</tr>
<tr>
<td>EASC 633</td>
<td>Earthquake Seismology and Earthquake Hazard</td>
<td>3</td>
</tr>
<tr>
<td>EASC 635</td>
<td>Disaster Risk Management</td>
<td>2</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

Core

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 622</td>
<td>Applied Engineering Geology Fieldwork</td>
<td>2</td>
</tr>
<tr>
<td>EASC 626</td>
<td>Principles of Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>EASC 628</td>
<td>Engineering and Environmental Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EASC 632</td>
<td>Waste Management and Landfill Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>11</strong></td>
</tr>
</tbody>
</table>

Electives (Select a minimum of 5 Credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 624</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>EASC 636</td>
<td>Geotechnical Earthquake Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EASC 638</td>
<td>Risk Assessment</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

EASC 600 DISSERTATION
An individual study culminating in a formal dissertation. The dissertation is undertaken under the supervision of a faculty member. The purpose of this work is to develop and underpin a personal understanding of the fundamentals required to solve a problem. Attention will be paid to the logic
and systematics needed to achieve this in practice. Most problems in engineering geology arise from ground conditions encountered in the field and, therefore, fieldwork is a common component of the dissertations completed. The analysis of raw field data from industry is another common source of study.

EASC 610  SEMINAR
The Research Seminar Course is intended to provide students planning a research career in Engineering Geology with the opportunity to develop the skill of critical reading and evaluation of research papers. The course is open to all students, and is a required component of the MSc in Engineering Geology programme. The course will consist of a weekly timetabled session in which students will read, present and discuss influential research papers across a broad range of subject areas.

EASC 621  ADVANCED SOIL MECHANICS
Physical and mechanical properties of natural soils; classification tests; principle of effective stress; one-dimensional consolidation and settlement; shear strength; compaction and general requirements for geotechnical analyses. Stiffness and compressibility of soils, ideal models, behaviour of real soils, critical state framework, concept of yield, elastic-plastic concepts of yield, undrained strength of soils. Soil mechanics in construction, bearing capacity for the settlement of foundations, calculation of earth pressures for retaining structures, slope stability, instrumentation, analyses and stabilisation. Design and construction processes; case studies. Examples are soft ground tunnelling; ground improvement techniques; offshore foundations; reinforced earth and soil nailing; deep excavations. Formation, accumulation and geotechnical characteristics of soils found on land and in rivers, estuaries and lakes, in tropical, arid and glacial environments.

EASC 622  APPLIED ENGINEERING GEOLOGY FIELDWORK
A total of 18 days would be spent under supervision in the field studying engineering characteristics of soils and rocks, rock mechanics, geomorphology, site investigations, earthquake engineering, tunneling, slope failures and major infrastructure projects. Visits would be made to civil engineering constructions in progress in both surface and underground works so that the coupling between ground conditions, ground investigation, design, analyses and actual performance could be considered.

EASC 623  ADVANCED ROCK MECHANICS
EASC 624 INDEPENDENT STUDY
Report writing using data from real sites and requiring the design of investigations, the interpretation of results, recommendations for further actions, and an assessment of contractual consequences for engineering geology in practice. Includes library searches, air photo interpretation, rock and soil core logging and sample description.

EASC 625 LABORATORY AND FIELD TECHNIQUES
The course covers the conventional tests for soils used to index and classify soils, and to measure their permeability, consolidation characters, and shear strength. Commonly used field tests for assessing the strength of rocks and their discontinuities are completed in the field and incorporated into estimations of the strength of rock masses, and the explanations of rock mass response to changing loads and environments. Basic instruction in rock core logging for geotechnical purposes. Techniques of site investigation including: sample description; soil drilling and sampling; in situ testing by cone, SPT, vane, field loading and pressuremeter testing. Interpretation of strength, permeability and stiffness from in-situ tests. Principles of the laboratory measurement of load, stress, strain and pore water pressure; measurements with electronic sensors; selection of testing procedures and testing strategies. Field measurements of full-scale behaviour including: earth pressure cells; displacement gauges and piezometers. Analysis of potential errors and approaches for their mitigation.

EASC 626 PRINCIPLES OF HYDROGEOLOGY
The definition, measurement and quantification of head, the natural parameters controlling hydraulic conductivity and the transmissivity, storage and quality of groundwater, quantification of flow in pores and fissures by various methods, the assessment of field parameters, wells and water supply, the control of groundwater in surface and underground works.

EASC 628 ENGINEERING AND ENVIRONMENTAL GEOPHYSICS
This course discusses basic principles of geophysical methods that are used in site investigation to obtain subsurface engineering information and environmental evaluation of development sites. Emphasis will be given to latest geophysical techniques (surface and subsurface) used in the industry. The relationship between geophysical parameters and engineering geological properties of rock and soil will be discussed together with some case studies. Special emphasis will be given to waste disposal and contaminated sites, and detection and mapping of sinkholes and shallow buried objects.

EASC 631 CASE HISTORIES AND PRACTICE IN ENGINEERING GEOLOGY
The course comprises directed reading and tutorials reviewing classical case histories in engineering geology, the lessons to be learnt from them and their application to present practice. The course also includes a series of master classes in the assessment and presentation of geotechnical information for contracts, and risk assessment, based on data from real cases and presented viva voce.

EASC 632 WASTE MANAGEMENT AND LANDFILL ENGINEERING
The principles of landfill design and the containment of leachate, lining systems, character of landfill waste and waste maturation, gas emissions, their monitoring and control. The course
concludes case history evidence and interdisciplinary coursework based on a real site and using real data.

**EASC 633 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD**
The course aims to provide an understanding of the dynamics of the solid Earth from theoretical and observational seismology and seismotectonics in relation to earthquake hazard and mitigation. It provides an in-depth study of earthquake seismology and earthquake hazard. Topics include: Seismic waves, dispersion, attenuation, earth structure. Earthquake sources processes, focal mechanisms, seismotectonics. Earthquake precursors, earthquake prediction, earthquake hazard and mitigation. A combination of lectures (including guest speakers), tutorials, MatLab exercises, individual course work and individual/group practicals are used for the course delivery.

**EASC 635 DISASTER RISK**
This course is a systematic approach to identifying, assessing and reducing risks of all kinds associated with hazards and human activities. It looks at natural disasters in general but gives prominence to earthquakes. The course has 2 main components: (i) a general introduction to disasters, vulnerability and disaster management. (ii) More extensive work on specific aspects of the above, looking at discrete topics that are particularly relevant to engineers working with hazard-prone societies (e.g. impact on society, economies, infrastructure, urban development, relief, reconstruction and recovery). Course delivery involves a combination of lectures, seminars (including guest speakers), individual coursework and individual/group practicals (e.g. desk-based vulnerability analysis, emergency response and assessment scenarios). Visits to other organisations and sites may be organised where appropriate.

**EASC 636 GEOTECHNICAL EARTHQUAKE ENGINEERING**
This course aims to impart knowledge of the impact of seismic behaviour of soils (site response and liquefaction) on the seismic hazard at a site and provides the necessary background to the seismic design and analysis of foundations and earth structures. The course will be delivered using a combination of lectures, seminars and practical/computer-based tutorials. Real case studies will be used to illustrate the concepts taught and how seismic design and analysis are carried out in practising engineering. Topics include: Dynamic properties of soils, site response analysis, liquefaction assessment, design of shallow and deep foundations, slope stability assessment, design of embankments, earth retaining structures, dynamic soil-structure interaction and design of foundations.

**EASC 638 RISK ASSESSMENT**
This course gives an overview of how engineers and different agencies assess seismic risk to life, economy, buildings, special structures, geotechnical structures and infrastructure. The course will also deliver an understanding of the uncertainties involved in risk estimation. The course will be delivered via lectures (including guest lectures), seminars and case study projects. Topics covered include: Methodologies for single and multiple building damage assessments, building damage scales and intensity. Methods for the prediction of earthquake risk to buildings and geotechnical structures. The importance of inventory, earthquake and building vulnerability data and the study of uncertainty associated with the estimation of seismic risk. Seismic risk assessment for special structures (e.g. nuclear facilities). Concepts of consequence/performance based design/assessment. Methods for seismic risk estimation in terms of monetary loss used by insurers and re-insurers.
Seismic risk to human populations adopted by disaster managers, NGO’s, the military, etc.

MODULAR GRADUATE PROGRAMMES IN EARTH SCIENCE

INTRODUCTION
Continuous development of skills and knowledge is a critical component of success in the field of Geosciences. However, because of the constant demands of the workplace, geoscientists can rarely afford to take significant amounts of time off to update their knowledge and skills. Recognizing this, the Department of Earth Science has designed a two-year Modular Master of Science (MSc) programmes in Earth science, with two options: Mineral Exploration and Groundwater Resources Development. In addition to the general university regulations governing the award of higher degrees, the departmental regulations that apply are provided below.

ADMISSION REQUIREMENTS
The basic requirement is a BSc degree in the Earth Sciences, with at least Second Class Lower Division, and a minimum of two years industrial or equivalent experience. Admission will be competitive and applicants will be evaluated on the same criteria as the research-based MPhil programme.

DURATION OF STUDY PROGRAMME

<table>
<thead>
<tr>
<th>Programme</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Time</td>
<td>2 Years</td>
</tr>
<tr>
<td>Part-Time</td>
<td>4 Years</td>
</tr>
</tbody>
</table>

ACADEMIC SESSION
In order to minimize the impact on the regular academic programs, the Modular programmes are conducted outside the normal academic terms, from early-June to mid-August each year.

A Programme Year shall normally be of 8 weeks duration and shall be structured as follows:
- 6 weeks of Teaching
- 1 week of Revision
- 1 week of Examinations

PROGRAMME STRUCTURE
The programme shall consist of coursework designed in modules, a seminar, and short research project (12 credits). It is expected that the project will normally be completed within two years of commencement of the programme. Two modules (12 credits each) shall be offered in each option (i.e., Mineral Exploration and Groundwater Resources Development), in alternate years. Each module shall comprise of 4 courses and will run for about 8 weeks.

Lectures and practicals of each course shall be held between 8 a.m. and 5 p.m. from Monday to Friday, over a period of two weeks (24 hours lectures and 36 hours practical work).

REQUIREMENTS FOR GRADUATION
The following are the credits that a registered student is required to earn in order to graduate:
**Coursework** 24 Credits
**Seminar** 3 Credits
**Dissertation** 12 Credits
**Total** 39 Credits

**M.SC. MINERAL EXPLORATION**

**MODULE CONTENTS**

**Mineral Evaluation Techniques (MEVT) 12 Credits**
Lectures, practical exercises, seminars on Ore Petrology; Mine Feasibility Studies; Geostatistics and Ore Reserve Estimation; Mineral Resource Economics, Policies and Management.

**Mineral Exploration Techniques (MEXT) 12 Credits**
Lectures, practicals, hands-on exercises, and field exercises in Exploration Geophysics, Exploration Geochemistry, Remote Sensing and GIS, and Structural Analysis.

**MINERAL EVALUATION TECHNIQUES**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 641</td>
<td>Ore Petrology</td>
<td>3</td>
</tr>
<tr>
<td>EASC 642</td>
<td>Mine Feasibility Studies</td>
<td>3</td>
</tr>
<tr>
<td>EASC 643</td>
<td>Geostatistics and Ore Reserve Estimation</td>
<td>3</td>
</tr>
<tr>
<td>EASC 644</td>
<td>Mineral Resource Economics, Policies and Management</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>12</strong></td>
</tr>
</tbody>
</table>

**MINERAL EXPLORATION TECHNIQUES**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 645</td>
<td>Mineral Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EASC 646</td>
<td>Mineral Exploration Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>EASC 647</td>
<td>Remote Sensing and GIS for Exploration Geologists</td>
<td>3</td>
</tr>
<tr>
<td>EASC 648</td>
<td>Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>12</strong></td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**

**EASC 600 APPLIED RESEARCH PROJECT**
All students registered in the Mineral Exploration programme will be required to complete a project report. The project work must commence in the First Year and the report must be completed and submitted by the end of the Second Year. The scope and topic of the project will be determined by the supervisor and will focus on a problem of interest to the student’s employer, typically in one of their active exploration or mining areas. The general expectations are that the project report will represent original work but limited in scope compared to a traditional MPhil thesis.

**EASC 610 SEMINAR**
Students give seminars on a chosen topic of interest (preferably related to their research), research proposal and research results.

**EASC 642  MINE FEASIBILITY STUDIES**
Topic to be treated include: the role of the feasibility study in the mine development decision process, types of mine feasibility studies, organization of the preliminary feasibility study, presentation of project material, mining methods, geological data, mineral processing, surface facilities/infrastructure/environmental requirements, capital and operating cost, revenue estimation, mineral taxation and financial evaluation, sensitivity and risk analysis. Students carry out feasibility study on a given mineral deposit. Laboratory sessions and field exercises are designed to allow a feasibility report on an actual case study to be carried out.

**EASC 643  GEOSTATISTICS AND ORE RESERVE ESTIMATION**
This course deals with applied statistics in mineral exploration. Essentials of sampling and drilling techniques including pitting, trenching, rotary, percussion, reverse circulation and diamond core drilling are discussed. The course also includes geostatistics and advanced methods in ore reserve estimations such as variogram and semi-variogram calculations, kriging, estimation of variance, and grade and tonnage control are presented. Quality assurance/ quality control in exploration data management will also be discussed.

**EASC 644  MINERAL RESOURCE ECONOMICS, POLICIES AND MANAGEMENT**
The course deals with subjects such as current mineral markets, legal and fiscal considerations, environmental regulations, problems of mining and processing, exploration design, and financial management. Aspects of mineral projects evaluation techniques covering time value of money concept, the concept of cash flow and cash flow criteria, mineral projects evaluation criteria, non-discounted and discounted cash flow methods, mining taxation considerations, inflation effects on project evaluation, and sensitivity and risk analysis techniques are also included in this course.

**EASC 641  ORE PETROLOGY**
The course will address the geology, mineralization, and origin of hydrothermal ore deposits. Emphasis will be placed on the processes responsible for their formation, the recognition of alteration halos, and the features pertinent to exploration. Essentials of reflected light microscopy, mineralogy, textural relationships, paragenesis, and phase chemistry of major ore minerals are also covered. The course will involve lectures, practical exercises, and laboratory exercises.

**EASC 645  MINERAL EXPLORATION GEOPHYSICS**
This course is devoted to modern geophysical techniques required for the detection of mineral anomalies. Geophysical techniques include resistivity, gravity, aeromagnetic, induced polarization, electromagnetic and seismic methods. In laboratory sessions, students use exploration reports and computerized data bases to train in interpretation of geophysical data.

**EASC 646  MINERAL EXPLORATION GEOCHEMISTRY**
This course is devoted to modern geochemical techniques required for the detection of mineral anomalies in known mining areas and in “virgin” territories. The course will cover the principles and methods of geochemical exploration, including planning, sampling, geochemical analysis, data handling, and interpretation. The course will involve lectures, practical exercises, and
laboratory exercises.

**EASC 648  STRUCTURAL ANALYSIS**
This course covers the mechanisms of crustal deformation applied to geological structures and mineral deposits. It will focus on terrane analysis and structural controls on the localization and genesis of mineral deposits. It will examine regional and local structural controls using the lode Au deposits of the Birimian greenstone belts as a case study. The course will involve lectures, practical exercises and field studies.

**EASC 647  REMOTE SENSING AND GIS FOR EXPLORATION GEOLOGISTS**
The course focuses on the application of remote sensing and Geographical Information System (GIS) to mineral resources and ore body evaluation studies. Courses in remote sensing cover aerial photography and satellite image interpretations using multi-spectral, thermal infrared, and radar images. GIS softwares such as MapInfo and ArcGIS will be taught.

**M.S.C. GROUNDWATER RESOURCES DEVELOPMENT**

**GROUNDWATER EXPLORATION (GEXP) 12 Credits**
Lectures, practicals, hands-on exercises and field exercises in Exploration Geophysics, Remote Sensing and GIS, Hydrological Processes at the Earth’s Surface, and Aquifer Properties and Basic Principles of Groundwater Flow

**GROUNDWATER EVALUATION AND CHEMISTRY (GEVC) 12 Credits**

**GROUNDWATER EXPLORATION (GEXP)**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 651</td>
<td>Exploration Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>EASC 652</td>
<td>Remote Sensing and GIS</td>
<td>3</td>
</tr>
<tr>
<td>EASC 653</td>
<td>Hydrological Processes</td>
<td>3</td>
</tr>
<tr>
<td>EASC 654</td>
<td>Aquifer Properties and Groundwater Flow</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>12</strong></td>
</tr>
</tbody>
</table>

**GROUNDWATER EVALUATION AND CHEMISTRY (GEVC)**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC 655</td>
<td>Geology of Groundwater Occurrence</td>
<td>3</td>
</tr>
<tr>
<td>EASC 656</td>
<td>Chemistry of Natural Groundwater and Contamination</td>
<td>3</td>
</tr>
<tr>
<td>EASC 657</td>
<td>Evaluation and Management of Groundwater Resources</td>
<td>3</td>
</tr>
<tr>
<td>EASC 658</td>
<td>Water Resource and Rural Water Supply Studies</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td><strong>12</strong></td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**
**EASC 600  APPLIED RESEARCH PROJECT**

All students registered in the Groundwater Resources Development programme will be required to complete a project report. The project work must commence in the First Year and report must be completed and submitted by the end of the Second Year. The scope and topic of the project will be determined by the supervisor and will focus on a problem of interest to the student’s employer. In general, the expectations for the project report are that it represents original work but is limited in scope compared to a traditional MPhil thesis.

**EASC 610  SEMINAR**

Students give seminars on a chosen topic of interest (preferably related to their research), research proposal and research results.

**EASC 651  EXPLORATION GEOPHYSICS**

This course is devoted to modern geophysical techniques required for groundwater exploration. Geophysical techniques include resistivity, aeromagnetic, induced polarization, electromagnetic and seismic methods. In laboratory sessions, students use exploration reports and computerized data bases to train in interpretation of geophysical data.

**EASC 652  REMOTE SENSING AND GIS**

The course covers the application of remote sensing and Geological Information System (GIS) to groundwater investigations. Courses in remote sensing cover aerial photography and satellite image interpretations using multispectral, thermal infrared, and radar images. GIS softwares such as MapInfo and ArcGIS will also be taught.

**GEOL 654  AQUIFER PROPERTIES AND GROUNDWATER FLOW**

This course provides a basic understanding of the physical characteristics of the water-bearing formations and groundwater flow. It covers the understanding of boundary and initial conditions that pertain during groundwater flow including flownet analysis. Groundwater-surface water interactions and the underlying principles for the interaction between freshwater and seawater shall be treated. This course also exposes the student to the behaviour of the various aquifer systems during groundwater flow. It presents the fundamental principles underlying the determination of the hydraulic characteristics of the various aquifer systems and the understanding of the mechanisms and equations of groundwater flow. Hand-on practical examples shall be treated.

**EASC 653  HYDROLOGICAL PROCESSES**

The course presents an overview of elements of the hydrological cycle and how they contribute to the earth’s water balance and subsurface groundwater system. Methods of measurement and quantification of these elements will also be thought. Rainfall-runoff relationships will be elucidated.

**EASC 655  GEOLOGY OF GROUNDWATER OCCURRENCE**

The course elucidates the various aquifer types. Particular emphasis will be placed on the in-depth understanding of the hydraulic characteristics of these aquifers and the role of geology and structure in the transmission and storage of groundwater. The hydraulic properties of fractured aquifer systems shall be dealt with comprehensively as most aquifer systems in Ghana are
localized within these aquifer types.

EASC 656 CHEMISTRY OF NATURAL GROUNDWATER AND CONTAMINATION
The course provides basic understanding of the fundamental principles governing groundwater flow and its chemical constituents. Kinetics and key reactions influencing groundwater chemistry shall be treated. Geochemistry of natural water systems such as chemical processes and their impact on water chemistry shall be presented. Water quality standards and transport processes of constituents shall be dealt with. The course shall elucidate hydrochemical behaviour of contaminants and how parameters are measured, monitored and assessed. Groundwater vulnerability to pollution and hydrochemical modelling shall be dealt with. Sources of contaminants shall be taught. Case Studies from various hydrogeological terrains shall be presented.

EASC 657 EVALUATION AND MANAGEMENT OF GROUNDWATER RESOURCES
This aspect covers various management options and basic concepts in the evaluation and management of groundwater resources. It includes insight into the development of groundwater resources, particularly the response of ideal aquifers to pumping, measurements of parameters and prediction of aquifer yields. Attention shall be paid to the response of confined, leaky and unconfined aquifers to pumping and step drawdown tests to evaluate the productivity of the wells. Well drilling methods, drilling fluids, well screens, water well design and development of water wells shall also be taught. Groundwater evaluation and management strategies and the introduction of groundwater flow modelling and practical application of these models shall be emphasized.

EASC 658 WATER RESOURCE AND RURAL WATER SUPPLY STUDIES
It covers water resources of Ghana, assessment of groundwater within integrated water resources management and Ghana’s water policy and guiding principles. The course also includes the following: community water supply initiatives and management challenges, water supply options in Ghana; Optimization and maintenance protocols in rural water systems; exploration strategies in rural water supply and sustainable water supply options. The course shall also cover linkages between water and sanitation in rural communities.
DEPARTMENT OF MATHEMATICS

THE M.PHIL. PROGRAM FOR MATHEMATICS.

Entry Requirement: A good first degree in Mathematics or Physics or any other relevant subject.

Programme Requirement:
• A student should undertake a minimum of three of any of the following courses per semester in the first year of enrolment.

Each course carries 4 credits. Courses are to be selected in consultation with the Head of Department. The courses offered will depend upon the interests of available staff.

MATH 601 Topology
MATH 602 Group Theory
MATH 603 Calculus on Manifolds
MATH 604 Lebesgue Measure Theory
MATH 605 Functional Analysis
MATH 606 Convexity
MATH 607 Differential Geometry
MATH 609 Boundary Value Problems
MATH 610 Seminar I
MATH 611 Differential and Integral Equations
MATH 612 General Relativity
MATH 613 Classical Electrodynamics
MATH 614 Many-Body Problems and the Theory of Condensed Matter
MATH 615 Group Theory in Physics I
MATH 616 Group Theory in Physics II
MATH 617 Mathematical Modelling
MATH 618 Operations Research
MATH 619 Numerical Analysis
MATH 620 Seminar II
MATH 621 Statistical Mechanics
A student will undertake a supervised research program.

**Scheme of Examination:**
- A 3-hour written paper will be taken at the completion of each course.
- A thesis of research findings will be submitted by the end of the second year of enrolment.

**Qualification for the award of M.Phil.:** A student will qualify for the award of M.Phil. by obtaining a minimum of 24 credits for course work. In addition, a student will successfully defend the submitted thesis and also complete two seminar presentations.

**COURSE DESCRIPTION**

**MATH 601 TOPOLOGY**
Sequential, local, countable compactness, compactification. Existence of continuous functions and fixed point properties for mappings from a compact simply-connected space to R, R2. Rotation number, homotopy. Extension of existence of continuous functions to maps with compact but not simply-connected domain. Finite products and Tychonoff’s theorem. Separation properties, normal spaces, Urysohn’s lemma, Tietze extension theorem. Introductory algebraic topology, fundamental group, covering spaces, classification of connected manifolds (surfaces). An introduction to homology theory.

**MATH 602 GROUP THEORY**

**MATH 603 CALCULUS ON MANIFOLDS**
Abstract differentiable manifolds, Riemannian manifolds, vector bundles, vectorfields and differential equations, covectorfields, tensors and tensorfields, the tensor calculus. Differentiation on Riemannian manifolds, constant vectorfields and parallel displacement, the curvature tensor and the Riemannian connection, differentiation of covariant tensor fields, integration on manifolds.

**MATH 604 LEBESGUE MEASURE THEORY**
Abstract measure, Lebesgue measure, geometric properties of Lebesgue measure, the space of measurable functions, measure preserving transformations, structure of measures in special spaces, the Daniell integral, Haar measure. The spaces Lp, classical Fourier series, reflections on Hilbert space.
MATH 605 FUNCTIONAL ANALYSIS
Basic Properties of Topological, Locally Convex and Banach Spaces; Operators; Duality; Basic Theorems in Functional Analysis; Spectral Theory in Hilbert Spaces; Integration of Vector Valued Functions; Compact Operators; Examples and Application to Classical Analysis.

MATH 606 CONVEXITY
Convex figures in Rn, frontier, width, diameter. Helly’s theorem, Jung’s theorem. Radon’s theorem in R2. The Pasch axiom and some corollaries. Blaschke’s theorem.

MATH 607 DIFFERENTIAL GEOMETRY
Conformal, inversive, hyperbolic, spherical and Minkowski geometries. Manifolds. Topology on manifolds, Riemannian manifolds, group actions, covering spaces, the Uniformisation Theorem. Introduction to the classification of 3-manifolds by their geometries and the Geometrisation Conjecture.

MATH 609 BOUNDARY VALUE PROBLEMS
Fundamental Equations and Solutions of Partial Differential Equations; Existence and Regularity of Solutions; Boundary Value Problems and Mixed Boundary Value Problems.

MATH 610 SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

MATH 611 DIFFERENTIAL AND INTEGRAL EQUATIONS
Differential Equations: Existence, Uniqueness, Dependence on initial values and parameters; Qualitative Behaviour of Linear and Non-Linear Equations; Regular Eigenvalue Problems. Integral Equations: Basic Existence Theorems; Fredholm Theory; Dual Integral and Series Equations; Singular Integral Equations; Application.

MATH 612 GENERAL RELATIVITY

MATH 613 CLASSICAL ELECTRODYNAMICS
Covariant Maxwell’s equations. Motion of a charge in an electromagnetic field. The electromagnetic field tensor; energy-momentum tensor; Maxwell’s stress tensor. Multi-pole moments; systems of charges in an external field. Spectral and Fourier resolutions of electromagnetic waves; diffraction. Retarded potential; Lienard-Wiechert potentials; radiation of electromagnetic waves. Scattering of waves by charges; effective cross-section.

MATH 614 MANY-BODY PROBLEMS AND THE THEORY OF CONDENSED MATTER
Second quantisation; Schrodinger, Heisenberg and Interaction pictures; Thermal Green’s
functions; finite temperature Wick’s theorem; Feymann diagrams; equations of motion; applications to solid state physics; zero-temperature formalism. Basic energy band theory of solids; the fermi surface; theory of phonons and lattice vibrations; electrons in metals; electron-phonon interaction; magnetic moments and their interactions in solids; linear response theory; linear response function; the inhomogeneous electron gas; density functional theory; spin susceptibility; theory of superconductivity and superfluidity.

**MATH 615 GROUP THEORY IN PHYSICS I**
Concept of a group, structure of groups, representations of groups. Theory of group representation; representation of the symmetric groups; topological groups; theory of representations of topological groups; the classical groups.

**MATH 616 GROUP THEORY IN PHYSICS II**
Lie Algebras and Lie Groups. Finite-dimensional irreducible representations of semi-simple Lie groups.

**MATH 617 MATHEMATICAL MODELLING**
Transforming real life situations into mathematical statements; Deterministic Mathematical Models; Examples from Areas of Biology, Economics, Industry, Deformable Media and Other Dynamical Systems.

**MATH 618 OPERATIONS RESEARCH**
Replacement Theory; Scheduling; Inventory Control; Queueing Theory; Dynamic Programming; Markov Chains and Simulation; Decision Theory; Mathematical Game Theory; Gambling.

**MATH 619 NUMERICAL ANALYSIS**
Numerical Differentiation and Integration; Numerical Solution of Ordinary and Partial Differential Equations; Parabolic and Elliptic Systems; Eigen Value Problems; Chebychev, Optimization and Monte-Carlo Methods.

**MATH 620 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**MATH 621 STATISTICAL MECHANICS**
A review of basic principles of statistical mechanics; applications; correlation and response functions; phase transition; liquid helium; hard-sphere Bose gas; the Ising and related models; Onsager solution of the 2-dimensional Ising model.

**MATH 622 PROBABILITY THEORY**
Abstract measure, probability as measure, conditional probability. Random variables as measureable functions, distribution functions, discrete random variables, continuous random variables, probability density. Binomial, Poisson distributions, Convergence. The space of distribution functions, characteristic functions, the inversion and continuity theorems, generating functions. Independence, the central limit theorem, the law of the iterated logarithm. An introduction to the general theory of stochastic processes.
MATH 623 QUANTUM MECHANICS
Ket and Bra vectors; equations of motion; perturbation theory; collision problems; theory of radiation; relativistic theory of the electron; representation theory; symmetry principles and their consequences; spin; addition of angular momentum. Path integral formulation of quantum mechanics.

MATH 624 QUANTUM FIELD THEORY

DEPARTMENT OF NUTRITION AND FOOD SCIENCE

M. PHI (FOOD SCIENCE)

ENTRY REQUIREMENTS
A good first degree in Food Science. A candidate with a good first degree in Nutrition, Biochemistry, Chemistry, Engineering or an equivalent qualification may also be considered.

YEAR 1
Core Courses

- FDSC 601 Experimental Design and Data Analysis 3
- FDSC 602 Advances in Food Microbiology 3
- FDSC 603 Food Biotechnology 3
- FDSC 604 Food Chemistry and Analysis 3
- FDSC 618 Food Engineering and Operations 3
- FDSC 607 Food Process and Product Development 2
- FDSC 612 Quality control and Analysis 2
- FDSC 630 Seminar I (Scientific Reporting and Presentation Techniques) 3

Electives A

- FDSC 608 Post-harvest Conservation 2
- FDSC 609 Food Additives and Toxicology 2
- FDSC 610 Special Topics 1
- FDSC 619 Food Rheology 2
- NUTR 604 Advances in Macro and micro-nutrients 2
- NUTR 614 Interaction of Nutrition, food and agriculture 1

Electives B

(Selection to be based on the advice of Department)

- FDSC 302 Thermal processing of foods 2
- FDSC 305 Physical principles in food processing 3
- FDSC 309 Biometry 1
- FDSC 405 Sensory Analysis of Foods 1
- FDSC 407 Quality control in food processing 2
- NUTR 301 Nutrients and their metabolism I 2
- NUTR 302 Nutrients and their Metabolism II

M. PHIL YEAR II / PHD

*FDSC 600 Thesis Research 30
- FDSC 640 Seminar II 3

COURSE DESCRIPTIONS

FDSC 600 RESEARCH AND THESIS
Research in Food Science and Technology or in cognate areas

FDSC 601 EXPERIMENTAL DESIGN AND DATA ANALYSIS
Statistical techniques in food nutrition research, project design and evaluation. Data analysis

FDSC 602 ADVANCES IN MICROBIOLOGY
Rapid methods of identification of microorganism; microbiology of effluents from food industries; principles of waste management. Microbiology in Environment management in food
industries.

**FDSC 603 FOOD BIOTECHNOLOGY**


**FDSC 604 FOOD CHEMISTRY AND FOOD ANALYSIS**

Selected topics on the chemistry of food proteins, lipids and carbohydrates. Analytical techniques in food research – chromatography, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, light microscopy, transmission and scanning electron microscopy etc. Use of radioisotopes.

**FDSC 607 FOOD PROCESS AND PRODUCT DEVELOPMENT**

Procedures in food product development. New product and market evaluations Process or product optimization techniques (use of design of experiments in product and process research and development). Quality control in product development.

**FDSC 608 POST-HARVEST FOOD CONSERVATION**


**FDSC 609 FOOD ADDITIVES AND TOXICOLOGY**

Classes of food additives; properties and chemistry and modes of action; use and detection of additives. Essentials of toxicology; sources of toxicants, naturally occurring toxicants in foods. Antinutritional factors in foods. Alcohol in nutrition. Nutrition and metabolism of drugs; carcinogens; agricultural residues in foods.

**FDSC 610 SPECIAL TOPICS**

A survey of recent advances in research and in technological developments in Food Science and technological developments in Food Science and Technology. Selected readings and essays.

**FDSC 612 QUALITY CONTROL AND ANALYSIS**


**FDSC 614 FOOD RHEOLOGY**


**FDSC 618 FOOD ENGINEERING OPERATIONS**

Contact – equilibrium processes. Food irradiation technology. Microwaves in food technology and handling. Engineering principles in traditional food processing.

FDSC 630 SCIENTIFIC REPORTING AND PRESENTATION TECHNIQUES (SEMINAR 1)

FDSC 640 SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

FDSC 661 RESEARCH PROPOSAL SEMINAR
Identification of research area and topic. Statements of problem, objectives of study, Literature review and methodology.

M.PHIL NUTRITION

YEAR I

Core Courses
NUTR 601 Nutritional Surveillance & Intervention 1
NUTR 602 Maternal & Child Nutrition 2
NUTR 604 Advances in Macro & Micronutrients 2
NUTR 606 Food & Nutrition Problems in Africa 2
NUTR 610 Practicals in Food and Nutrition Research 3
FDSC 601 Experimental Design & Data Analysis 3
NUTR 619 Nutritional Epidemiology 2
NUTR 640 Seminar 1 (Scientific Reporting and Presentation Techniques) 3

Electives A
(Minimum of 6, Maximum of 12 credits per Year)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 603</td>
<td>Diet, Disease &amp; Infections</td>
<td>2</td>
</tr>
<tr>
<td>NUTR 607</td>
<td>Geriatric Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 608</td>
<td>Regulation of Food &amp; Water Intake</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 609</td>
<td>Bioenergetics and Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 611</td>
<td>Biotechnology in Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 612</td>
<td>Growth and Body Composition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 613</td>
<td>Community Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 614</td>
<td>Interaction of Nutrition, Food &amp; Agriculture</td>
<td>1</td>
</tr>
<tr>
<td>NUTR 618</td>
<td>Practicals in Dietary Management of Disease</td>
<td>2</td>
</tr>
</tbody>
</table>
NUTR 620  Special Topics  2
NUTR 621  Nutritional Toxicology  1

ELECTIVES B
(Minimum of 4, Maximum of 8 credits per Year)
Selection to be based on the advice of the Department

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDSC 307</td>
<td>Principles of Food Preservation</td>
<td>1</td>
</tr>
<tr>
<td>FDSC 413</td>
<td>Food Laws and Regulations</td>
<td>1</td>
</tr>
<tr>
<td>ADMN 201</td>
<td>Introduction to Management</td>
<td>3</td>
</tr>
<tr>
<td>ADMN 321</td>
<td>Fundamentals of Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 204</td>
<td>Social Structures of Modern Ghana</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>Sub-Total</strong></td>
<td><strong>10</strong></td>
</tr>
</tbody>
</table>

(In consultation with the Department student without Nutrition background will be given a set of make-up courses to take)

YEAR II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTR 600</td>
<td>Thesis Research</td>
<td>30</td>
</tr>
<tr>
<td>NUTR 650</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

NUTR 600    RESEARCH AND THESIS
Research in Nutrition or in cognate areas.

NUTR 601    NUTRITIONAL SURVEILLANCE AND INTERVENTION
The role of Nutritional surveillance. Data needs for a nutritional surveillance system. Examples of organizational structure of surveillance systems. Early warning system. Nutrition intervention programs in the prevention and control of nutritional problems. Management in Food and Nutrition

NUTR 602    MATERNAL AND CHILD NUTRITION
Maternal nutrition and the outcome of pregnancy; Nutritional needs of the child; nutritional considerations of lactation; infant and child feeding; growth monitoring and growth reference curves.

NUTR 603    DIET, DISEASES AND INFECTIONS
The role of diet in the genesis and management of diseases. Relationship between nutrition, infections and infestations.

NUTR 604    ADVANCES IN MACRO AND MICRO-NUTRIENTS
Pre-requisite (NUTR 301, NUTR 302)
Recent concepts concerning vitamin and mineral nutrition; nutritional biochemistry of lipids;
regulation of whole body protein metabolism; nutritional role of dietary fiber; interrelationship of the nutrients. Micronutrients of public health importance.

NUTR 606 FOOD AND NUTRITION PROBLEMS IN AFRICA

NUTR 607 GERIATRIC NUTRITION
Effect of aging on nutritional status; nutritional requirements of the elderly; causes of undernutrition in the elderly. Meeting the nutritional needs of the elderly.

NUTR 608 REGULATION OF FOOD AND WATER INTAKE
Hunger, appetite and satiety; the role of the hypothalamus; theories of the control of food intake. Water intake, water contents and compartments of the body. Water balance and disturbances in the system.

NUTR 609 BIOENERGETICS
New research in energy requirements of the various age and physiological groups. Human working capacity; Nutrition and working efficiency and physical performance.

NUTR 610 PRACTICALS IN FOOD AND NUTRITION RESEARCH (LAB.)
Application of spectrophotometry, flame photometry, chromatography, electrophoresis, radioisotopy and animal experimentation in nutrition research.


NUTR 611 BIOTECHNOLOGY AND NUTRITION
The impact of biotechnology on nutrition; use of transgenic animals for specialized proteins such as milk protein production; bioactive proteins and peptides; genetic engineering and modification of food composition; moral and ethical issues relating to materials produced by biotechnology.

NUTR 612 GROWTH AND DEVELOPMENT
Physical growth from foetal life through infancy, adolescence to adulthood. Factors influencing growth and development. Effects of early growth on physiological and biochemical events; incidence of non-communicable diseases in later life.

NUTR 613 COMMUNITY NUTRITION
Concepts of nutrition as applied in community and public health; Nutrition education; nutritional status of population groups.

NUTR 614 INTERACTION OF NUTRITION, FOOD AND AGRICULTURE
The role of agriculture in supplying food needs; effects of cash crop on food crop production; food distribution and marketing. Agricultural development, economic growth and nutrition. Plant
breeding and nutritional values of food crops.

**NUTR 618  PRACTICALS IN DIETARY MANAGEMENT OF DISEASE**
The practice of nutritional therapy. Hospital and Clinical internship in the use of diet in the management of metabolic disorders and diseases.

**NUTR 619  NUTRITIONAL EPIDEMIOLOGY**
Introduction to epidemiology: Measuring disease frequency, prevalence, incidence, proportions; Screening; Human health outbreak investigations; Questionnaire development; Exposure and outcome assessment (diet and disease) Modeling; Experimental and observational epidemiologic study designs.

**NUTR 620  SPECIAL TOPICS**
Review of new research findings and current topics.

**NUTR 621  NUTRITIONAL TOXICOLOGY**
Principle and divisions of toxicology. Toxicants in foods, agricultural residues in foods, principles and mechanisms of carcinogenesis, toxicological tests, nutrition and alcoholism, drugs, food allergy, food intolerance. Food additives and hypersensitive reactions, allowable daily intakes.

**NUTR 640  SCIENTIFIC REPORTING AND PRESENTATION TECHNIQUES (SEMINAR 1)**
Report writing. Computer graphics and other applications. Audio-visual techniques for scientific presentations. Critique of scientific papers. Ethical issues in research and publications. Seminar and other presentations. Student will make at least one oral presentation to be assessed each semester and present a write-up of the presentation for assessment.

**NUTR 650  SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**FDSC 601  EXPERIMENTAL DESIGN AND DATA ANALYSIS**
Statistical techniques in Nutrition. Experimental design and data analysis.
DEPARTMENT OF OCEANOGRAPHY AND FISHERIES

The Department offers Master of Philosophy and Doctor of Philosophy degree programmes in Oceanography and Fisheries Science. The Oceanography programme has specialization in four areas:

1. Biological Oceanography
2. Physical Oceanography
3. Chemical Oceanography
4. Marine Geoscience

EXAMINATION SCHEME

M.PHIL FISHERIES SCIENCE OR M.PHIL OCEANOGRAPHY
The M.Phil programmes consist of a first year of course work, followed by a second of year of thesis to be presented within 24 months.

PH.D OCEANOGRAPHY OR PH.D FISHERIES SCIENCE
The Ph.D programme is purely by research with a thesis to be submitted not earlier than 27 months and not later than 60 months from the date of registration. In addition, a candidate shall be examined orally on the substance of his/her thesis.

ADMISSION REQUIREMENTS

1. (a) M.PHIL OCEANOGRAPHY
   A good first degree in the Physical or Biological Sciences from a recognized University
is required for admission.

(b) **M.PHIL FISHERIES SCIENCE**
A good first degree in the Physical or Biological Sciences from a recognized University is required for admission.

2. (a) **PH.D OCEANOGRAPHY**
A two-year research Master’s degree in Oceanography or related discipline from a recognized University is required for admission. In some instances, a student may be required to read and pass prescribed relevant core course(s) at level 600.

(b) **PH.D FISHERIES SCIENCE**
A two-year research Master’s degree in Fisheries Science or related discipline with adequate fisheries science content is required for admission. In some instances, student may be required to read and pass relevant core courses at level 600.

**Course Codes**
OCFS : Core courses for both Oceanography and Fisheries Science students.
OCNO : Oceanography courses.
FISH : Fisheries Science course.

---

**M.PHIL OCEANOGRAPHY**

**YEAR 1 (24 credits minimum and 36 credits maximum for Year 1)**

**Course Codes**
OCFS 603 Coastal Zone Management 2
OCFS 610 Seminar I 3
OCNO 611 Biological Oceanography 3
OCNO 613 Chemical Oceanography 3
OCNO 615 Physical Oceanography 3
OCNO 617 Oceanographic Techniques 2
OCNO 619 Marine Geoscience 3
FISH 605 Statistics and Computing 2

**Electives**
(A minimum of 7 credits to be selected depending on the student’s research area and in consultation with the supervising lecturer)

OCFS 601 Aquatic Environmental Studies 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNO 602</td>
<td>Advanced Biological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 604</td>
<td>Advanced Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 606</td>
<td>Advanced Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 608</td>
<td>Advanced Marine Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 622</td>
<td>Law of the Sea</td>
<td>1</td>
</tr>
<tr>
<td>OCNO 624</td>
<td>Ecology of Estuaries</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 626</td>
<td>Ecology and Conservation of Higher Marine Vertebrates</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 628</td>
<td>Deep Sea Biology</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 632</td>
<td>Marine Botany</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 634</td>
<td>Marine Biogeochemistry</td>
<td>2</td>
</tr>
<tr>
<td>FISH 611</td>
<td>Ecology of Fishes</td>
<td>3</td>
</tr>
<tr>
<td>FISH 612</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>FISH 613</td>
<td>Fisheries Resource Dynamics and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>FISH 615</td>
<td>Fisheries Management and Economic Studies</td>
<td>3</td>
</tr>
<tr>
<td>FISH 617</td>
<td>Fisheries Techniques</td>
<td>2</td>
</tr>
</tbody>
</table>

**YEAR II (Requirement of 36 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNO 600</td>
<td>Thesis Research</td>
<td>30</td>
</tr>
<tr>
<td>FISH 620</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

**M.PHIL FISHERIES SCIENCE**

**YEAR 1 (24 credits minimum and 36 credits maximum for Year 1)**

<table>
<thead>
<tr>
<th>Course Codes</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCFS 603</td>
<td>Coastal Zone Management</td>
<td>2</td>
</tr>
<tr>
<td>OCFS 605</td>
<td>Statistics and Computing</td>
<td>2</td>
</tr>
<tr>
<td>OCFS 610</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>FISH 611</td>
<td>Ecology of Fishes</td>
<td>3</td>
</tr>
<tr>
<td>FISH 612</td>
<td>Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>FISH 613</td>
<td>Fisheries Resource Dynamics and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>FISH 617</td>
<td>Fisheries Techniques</td>
<td>2</td>
</tr>
<tr>
<td>FISH 618</td>
<td>Fish Physiology</td>
<td></td>
</tr>
</tbody>
</table>

**ELECTIVES**

(A minimum of 5 credits to be selected in consultation with the supervising lecturer and may depend on the student’s research area)

<table>
<thead>
<tr>
<th>Course Codes</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCFS 601</td>
<td>Aquatic Environmental Studies</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 611</td>
<td>Biological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 613</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 615</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 617</td>
<td>Oceanographic Techniques</td>
<td>2</td>
</tr>
<tr>
<td>OCNO 619</td>
<td>Marine Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>OCNO 622</td>
<td>Law of the Sea</td>
<td>1</td>
</tr>
</tbody>
</table>
OCNO 624  Ecology of Estuaries  2
OCNO 626  Ecology and Conservation of Higher Marine Vertebrates  2
OCNO 632  Marine Botany  2
FISH 614  Conservation and Preservation of Fisheries
Genetic Resources  3
FISH 615  Fisheries Management and Economic Studies  3
FISH 616  Fish Pathology  2
FISH 622  Fish Nutrition and Energetics  2
FISH 624  Fish Processing and Marketing  1
FISH 626  Ecology of Freshwater and Wetlands  2
FISH 628  Freshwater Botany  2
FISH 632  Limnology  2

YEAR II (Requirement of 36 credits)

Course Code  Course Description
OCNO 600  Thesis Research  30
OCNO 620  Seminar II  3

COURSE DESCRIPTIONS

OCNO 601  AQUATIC ENVIRONMENTAL STUDIES
Environmental impacts of development projects on aquatic systems; assessment and management of pollutants in aquatic systems.

OCNO 602  ADVANCED BIOLOGICAL OCEANOGRAPHY
Microbiology and meiofaunal studies; ecology of marine invertebrates and vertebrates; physiology of marine organisms including biochemical adaptations; special habitats:- estuaries, lagoons, Intertidal zones and the deep sea environment; mariculture; special topics.

OCNO 603  COASTAL ZONE MANAGEMENT
Tropical coastal zone as an integrated system; management of coastal resources and developments, including legislation.

OCNO 604  ADVANCED CHEMICAL OCEANOGRAPHY
Speciation of elements in seawater; processes occurring at the sediment-water interface; marine biochemical cycles; marine organic chemistry; special topics

OCNO 606  ADVANCED PHYSICAL OCEANOGRAPHY
Tropical meteorology; air-sea interactions; tides and waves; sound in the oceans; special topics.

OCNO 610  SEMINAR I
Each student is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment.

OCNO 611  BIOLOGICAL OCEANOGRAPHY
Scope of biological oceanography; morphology and systematics of marine invertebrates and vertebrates; structure and function of marine ecosystems (global perspectives); tropical marine ecology including mangroves, coral reefs, lagoons; planktonology; algology.

**OCNO 613 CHEMICAL OCEANOGRAPHY**  
Scope of physical oceanography; physical properties of seawater; major pathways of natural elements and other substances; interactions between particular and dissolved constituents of seawater; marine pollution chemistry.

**OCNO 615 PHYSICAL OCEANOGRAPHY**  
Scope of physical oceanography; physical properties of seawater; oceanic circulation, including abyssal circulation; estuarine and coastal physical processes.

**OCNO 617 OCEANOGRAPHIC TECHNIQUES**  
Oceanographic field and laboratory methods, including position finding at sea, water mass movements, salinity determinations, sampling methods; remote sensing.

**OCNO 619 MARINE GEOSCIENCE**  
Scope of marine geoscience; origin of ocean basins; physical sedimentology; structural setting and topography of the continental shelf and ocean floor; coastal geological processes.

**OCNO 620 SEMINAR II**  
Each student will make a presentation soon after Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed.

**OCNO 622 LAW OF THE SEA**  
The Law of the Sea Convention and its relevance to management of marine resources and scientific research.

**OCNO 624 ECOLOGY OF ESTUARIES**  
Biotic and abiotic process and their interactions in the estuarine environment; anthropogenic impacts.

**OCNO 626 ECOLOGY AND CONSERVATION OF HIGHER MARINE VERTEBRATES**  
Ecology and conservation of marine reptiles, birds and mammals.

**OCNO 628 DEEP SEA BIOLOGY**  
Physiology and ecology of the fauna in the deep sea, including hydrothermal vents and cold seeps.

**OCNO 632 MARINE BOTANY**  
Taxonomy, physiology, ecology and economic importance of marine plants.

**OCNO 634 MARINE BIOGEOCHEMISTRY**  
Redox chemistry of seawater; chemistry of marine sediments; organic biogeochemistry.

**FISH 605 STATISTICS AND COMPUTING**
Experimental design and data analysis: computing with special reference to oceanography and fisheries.

**FISH 610 SEMINAR I**
Each student is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment.

**FISH 611 ECOLOGY OF FISHES**
Spawning, growth, survival distribution in relation to environmental factors with emphasis of Ghanaian coastal waters, lagoons and freshwater environments.

**FISH 612 AQUACULTURE**
Environmental and ecological considerations; methods of production, cultural practices employed for selected species; selective breeding; feeding and feed formulation; processing and marketing.

**FISH 613 FISHERIES RESOURCE DYNAMICS AND ASSESSMENT**

**FISH 614 CONSERVATION AND PRESERVATION OF FISHERIES GENETIC RESOURCES**
Principles of biodiversity and conservation. Strategies and techniques for monitoring, preservation and enhancement of genetic resources of fishes, significance of fish genetic diversity; special topics.

**FISH 615 FISHERIES MANAGEMENT AND ECONOMIC STUDIES**

**FISH 616 FISH PATHOLOGY**
Anatomy and histology: types of fish diseases; host-pathogen relationships; disease diagnosis, prevention and control; special topics.

**FISH 617 FISHERIES TECHNIQUES**
Field and laboratory methods used in fishery studies, including age determination quantitative description of diet and aquatic habitat measurements; remote sensing.

**FISH 618 FISH PHYSIOLOGY**
Environmental physiology of fishes; energy metabolism; fish endocrinology; special topics.

**FISH 620 SEMINAR II**
Each student will make a presentation soon after Year I examinations on his/her Thesis Research
Proposal and also present a progress report midway into the second semester. These will be assessed.

FISH 622  FISH NUTRITION AND ENERGETICS
Formulation of artificial and natural feed; nutritional quality and energy value of feed ingestion levels, assimilation, respiration, construction of energy budgets for different developmental stages; special topics.

FISH 624  FISH PROCESSING AND MARKETING
Patterns of fish marketing in the developed and developing economies; producer-consumer linkages; product-types and processing; trader and functions; i.e. small-scale and large-scale; equipment and installation; prices, costs and internal rate of returns; special topics.

FISH 626  ECOLOGY OF FRESHWATER AND WETLANDS
The freshwater environment; biotic and abiotic processes and interactions of freshwater environments; anthropogenic impacts; wetlands as an ecosystem; their evolution, physical and biological characteristics; anthropogenic impacts and management.

FISH 628  FRESHWATER BOTANY
Taxonomy, physiology, ecology and economic importance of freshwater plants.

FISH 632  LIMNOLOGY
Classification of freshwater bodies; physical and chemical processes; limnological techniques.

PH.D. PROGRAMMES
The Ph.D degree shall normally be of a 3-year duration. It is a research programme, the topic of which will be chosen in consultation with the candidate’s supervisory committee. On completion of the programme the candidate is required to submit a thesis on his research project. Subsequently, the candidate will be examined orally on the substance of thesis presented.
DEPARTMENT OF PHYSICS

MASTER OF PHILOSOPHY

ADMISSION REQUIREMENTS
A good first degree in Physics with adequate Mathematics background

YEAR I

Course Codes
PHYS 610 Seminar I 3
PHYS 611 Classical Mechanics 4
PHYS 612 Statistical Mechanics 4
PHYS 613 Quantum Mechanics 4
PHYS 614 Electrodynamics 4
PHYS 620 Seminar II 3

Electives Group A
A minimum of eight (8) credits to be selected from this section

PHYS 621 Principles of Nuclear Physics 4
PHYS 622 Solid State Physics 4
PHYS 631 Instrumentation & Physical Measurements 4
PHYS 632 Physics of Surfaces 4
PHYS 633 Semiconductor Materials & Devices 4
PHYS 634 X-ray Fluorescence Analysis 4
PHYS 635 Meteorology 4
PHYS 636 Crystal Diffraction & Electron Microscopy 4
PHYS 638 Energy 4
PHYS 639 Defects In Crystalline Materials 4
PHYS 641 Reactor Physics 4
PHYS 642 Radiation Bio-Physics 4
PHYS 643 Isotope Geochronology 4
PHYS 644 Mass Spectrometry 4

Electives Group B
(For candidates offering the Theoretical Physics Option a minimum of eight (8) credits to be selected)
The courses will be offered in collaboration with the Department of Mathematics.

<table>
<thead>
<tr>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 661</td>
<td>Mathematical Methods I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 662</td>
<td>Mathematical Methods II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 663</td>
<td>Quantum Theory of Solids</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 664</td>
<td>Fluid Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 665</td>
<td>Advanced Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 666</td>
<td>Quantum Electrodynamics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 667</td>
<td>Field Theory</td>
<td>4</td>
</tr>
</tbody>
</table>

**NOTE:** It may be necessary to give some courses in the semester in which specialist staff is available.

**YEAR II**

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Presentation II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 600 (Thesis)</td>
<td>30</td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**

**PHYS 610  SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**PHYS 611  CLASSICAL MECHANICS**
Survey of elementary principles including principles of particle and rigid body dynamics, constraints. Lagrange’s equation. Hamiltonian mechanics. Transformation theories of mechanics including Hamilton-Jacobi and Poisson bracket formulation. Lagrangian formulation of continuous media.

**PHYS 612  STATISTICAL MECHANICS**

**PHYS 613  QUANTUM MECHANICS**
The Dirac description of quantum mechanical state. Approximation methods for stationary states Equations of motion and classical correspondence. Time-dependent perturbation theory and application to atomic radiation. Scattering theory.

**PHYS 614  ELECTRODYNAMICS**

Special relativity: Covariance of Maxwell’s equations under the Transformations of Special Relativity, relativistic transformations of potentials, applications of the transformations, the Lienard-Wiechert potentials. Covariant (Lagrangian and Hamiltonian) description of charged particles and EM fields.

Electromagnetic Energy Radiation by accelerated charges; Cerenkov Radiation.

**PHYS 620 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**PHYS 621 SOLID STATE PHYSICS**
Periodic structures; lattice waves; electron states and energy band calculations; interatomic forces and static properties of solids; electron-electron and electron-phonon interactions; dynamics of electrons. Transport properties; optical properties; the fermi surface. Cooperative phenomena: magnetism; superconductivity.

**PHYS 622 PRINCIPLES OF NUCLEAR PHYSICS**

**PHYS 631 INSTRUMENTATION & PHYSICAL MEASUREMENTS**

**PHYS 632 PHYSICS OF SURFACES**
Surface structure and chemical composition; electronic contact potential and work function; surface states; band bending, plamons etc. Surface lattice dynamics, surface diffusion and surface melting. Adsorption of atoms and molecules; chemisorption and epitaxial processes; adhesion, friction, lubrication and wear of surfaces. Bulk methods used in studying surface properties.

**PHYS 633 SEMICONDUCTOR MATERIALS & DEVICES**

Avalanche and avalanche transit time oscillators. Optical properties. Lasers and photodetection.

**PHYS 634 X-RAY FLUORESCENCE ANALYSIS (XRFA)**

**PHYS 635 METEOROLOGY**
Physics of the atmosphere; Heat transfer; Condensation & precipitation. Winds; Synoptic meteorology; Boundary layer meteorology (micrometeorology. Instruments and Observation analysis; Remote sensing methods; Weather forecasting.

**PHYS 638 ENERGY**

**PHYS 639 DEFECTS IN CRYSTALLINE MATERIALS**
Vacancies, interstitials, impurity atoms. Energies of formation, equilibrium concentrations. Interactions between point defects, energies of migration, theory of diffusion. Quenching, irradiation damage, cold work, non stoichiometry. Shear processes; slip in crystals, Burger’s vector, screw and edge dislocations. Simple theory of dislocations; grain boundaries; plastic deformation.

**PHYS 641 REACTOR PHYSICS**

**PHYS 642 RADIATION BIO-PHYSICS**
The Biophysicist’s view of the cell: energetics and statistical relationships in the cell, intra and inter-molecular forces, physics of cellular processes. Absorption spectroscopy and molecular structure, action spectra and quantum yields. Interaction of electromagnetic and particulate radiation with biological systems: radiation counting and dosimetry, radiation damage and repair, survival curves and models, effect of radiation on cells, molecules, tissues and organs.

**PHYS 643 ISOTOPE GEOCHRONOLOGY**

**PHYS 644 MASS SPECTROMETRY**
Development and general theory. Types of mass spectrometers; Applications of mass spectrometers. Advances in mass spectrometry.
Ph.D. PROGRAMMES

The Ph.D degree shall normally be a 3-year programme. It is a research programme, the topic of which shall be chosen in consultation with the candidate’s supervisory committee. On completion of the programme the candidate is required to submit a thesis on his research project.

DEPARTMENT OF STATISTICS

The Department of Statistics runs an M.Phil Programme. It involves one year of course work followed by a year of supervised research, with a thesis to be submitted at the end of the second year.

ADMISSION REQUIREMENTS

A good first degree including at least two years of University Mathematics

PROGRAMME OUTLINE

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 601</td>
<td>4</td>
</tr>
<tr>
<td>Estimation and Decision Theory</td>
<td></td>
</tr>
<tr>
<td>STAT 602</td>
<td>4</td>
</tr>
<tr>
<td>Tests of Hypotheses</td>
<td></td>
</tr>
<tr>
<td>STAT 603</td>
<td>4</td>
</tr>
<tr>
<td>Probability Theory</td>
<td></td>
</tr>
<tr>
<td>STAT 604</td>
<td>4</td>
</tr>
<tr>
<td>Distribution Theory</td>
<td></td>
</tr>
<tr>
<td>STAT 610</td>
<td>3</td>
</tr>
<tr>
<td>Seminar I</td>
<td></td>
</tr>
<tr>
<td>STAT 620</td>
<td>3</td>
</tr>
<tr>
<td>Seminar II</td>
<td></td>
</tr>
</tbody>
</table>

Electives (Minimum 8 Credits, Maximum 16 Credits)
To be selected on the advice of the Department

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 605</td>
<td>Linear Statistical Models</td>
<td>4</td>
</tr>
<tr>
<td>STAT 606</td>
<td>Non-Parametric Inference</td>
<td>4</td>
</tr>
<tr>
<td>STAT 607</td>
<td>Analysis of Discrete Data</td>
<td>4</td>
</tr>
<tr>
<td>STAT 608</td>
<td>Biostatistical Processes</td>
<td>4</td>
</tr>
<tr>
<td>STAT 609</td>
<td>Advanced Sampling Theory</td>
<td>3</td>
</tr>
<tr>
<td>STAT 611</td>
<td>Stochastic Processes</td>
<td>4</td>
</tr>
<tr>
<td>STAT 612</td>
<td>Actuarial Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 613</td>
<td>Demographic Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 614</td>
<td>Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 616</td>
<td>Analysis of Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>STAT 630</td>
<td>Advanced Data Analysis</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

STAT 601 ESTIMATION AND DECISION THEORY

Large Sample properties of estimators. Comparison of UMVU, Bayes and Minimax procedures.

STAT 602 TESTS OF HYPOTHESES

STAT 603 PROBABILITY THEORY

STAT 604 DISTRIBUTION THEORY

STAT 605 LINEAR STATISTICAL MODELS

STAT 606 NON-PARAMETRIC STATISTICS
Application and interpretation of non-parametric tests including weighted rank tests, normal score tests and permutation tests. Comparison of tests. Non-parametric estimation.

STAT 607 ANALYSIS OF DISCRETE DATA

**STAT 608 BIOSTATISTICAL PROCESSES**
Deterministic and stochastic models of population change. The Life Table, its concepts and structure. Competing risks of illness and death. Survival and life expectancy of populations at risk.


**STAT 609 ADVANCED SAMPLING THEORY**
Analysis and comparison of various sampling schemes. Optimal designs.

**STAT 610 SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**STAT 611 STOCHASTICS PROCESSES**
Basic Concepts. Theory and application of selected discrete and continuous parameter processes.

**STAT 612 ACTUARIAL STATISTICS**

**STAT 613 DEMOGRAPHIC STATISTICS**

**STAT 614 MULTIVARIATE ANALYSIS**

**STAT 616 ANALYSIS OF EXPERIMENTAL DESIGN**

**STAT 620 SEMINAR II**
For year 2, each student will make a presentation soon after the Year 1 examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.
STAT 630         ADVANCED DATA ANALYSIS
Descriptive and Exploratory studies of Large Data Sets; Model Fitting and Testing.

DEPARTMENT OF ANIMAL BIOLOGY AND CONSERVATION SCIENCE

REQUIREMENTS
A good first degree with adequate Biology or Zoology content.
COURSES
Courses are to be taken by all students in the first year of the MPhil degree programme, to be followed in the second year by research and thesis writing. A minimum of 24 credits to a maximum of 36 credits is required for the first year. For the second year, the requirement is 36 credits.
One course credit is equivalent to one hour of lectures or three hours of practical per week per semester, or a combination of lectures and practicals based on this weighting

AREAS OF SPECIALIZATION
The following four areas of specialization are available:

Entomology (see Insect Science Programme (ARPPIS) for details)
Parasitology
Freshwater Biology
Biodiversity Studies

PARASITOLOGY

YEAR I

Core Courses
PARA 601 Biology of Parasites 4
PARA 602 Epidemiology of Tropical Diseases 3
PARA 603 Techniques & Preparations 3
PARA 604 Mini-Projects 3
PARA 605 Immunology of Parasites 3
PARA 606 Histopathology of Parasites 3
PARA 620 Seminar I 3
CROP 692 Biometry 3
BCHM 611 Parasite Biochemistry and Host Defence Mechanisms 2

Elective Courses
PARA 607 Physiology of Parasites 3
PARA 608 Zoonotic Diseases 2
PARA 609 Plant Parasitic Nematodes 2
PARA 610 Special Topics in Immunology 2
BCHM 400 Molecular Biology 2
BCHM 613 Mechanisms of Action of Microbial Compounds 2

YEAR II
PARA 600 Thesis Research 30
PARA 630 Seminar II 3

COURSE DESCRIPTIONS

PARA 601 BIOLOGY OF PARASITES
Animal associations: phoresis, commensalisms, symbiosis (mutualism), and parasitism as
examples. Origins and evolution of parasitism.

PARA 602 EPIDEMIOLOGY OF TROPICAL DISEASES
History and methods of epidemiology. An epidemiological treatment of the major parasitic diseases of the tropics (i.e., malaria, the leishmaniasis, trypanosomiasis, schistosomiasis, onchocerciasis, the filariases, including guinea worm). AIDS. Central role of human behaviour in the epidemiology of tropical diseases and its implications for control.

PARA 603 TECHNIQUES AND PREPARATIONS
Basic techniques involved in preparing parasitological material for studies and for preservation. Microtome work; slide preparations; fixation techniques.

PARA 604 MINI-PROJECTS
Practical supplement of the epidemiology course in which students work as a team on three disease systems, for each of which a study is devised and conducted in an area where the diseases are endemic. Individual reports of the studies are written up and submitted for assessment.

PARA 605 IMMUNOLOGY OF PARASITES

PARA 606 HISTOPATHOLOGY OF PARASITES
Gross and histopathology; humoral, chemical and toxic responses of organs and tissues to parasitic infections. Reaction of the skin and alimentary tract to bites and infestations of arthropods (e.g. biting flies, lice, mites, ticks), helminths, protozoa and their larvae. Reaction of the heart and lungs to helminths and their larvae. Tissue damage of the genitourinary system to parasitic infestation by protozoa and helminthes. Effect of protozoa and helminthes in the vascular and lymphatic systems.

PARA 607 PHYSIOLOGY OF PARASITES

PARA 608 ZOONOTIC DISEASES
Diseases of other animals transmitted to man; animals considered as possible sources of infection: dogs rodents, cats. Epidemiology of some zoonotic diseases: rabies, brucellosis, tapeworm (Echinococcus spp.). Potential and real health risk factors due to animals and their
products. The role of international agencies in the management of these diseases. Cases of zoonotic disease epidemics and their management.

PARA 609 PLANT PARASITIC NEMATODES
Parasitism of plant nematodes; general and principal features of plant-infecting nematodes; control measures; examples of plant nematodes in Ghana.

PARA 610 SPECIAL TOPICS IN IMMUNOLOGY
Extraction of parasite antigens and immunizations. Tissue culture; monoclonal antibody production and characterization. Microplate-based enzyme linked immunoasorbent assay; dot immunobinding assay; immunofluorescence; western blotting. Serology and sero-diagnostic methods in immunoprophylaxis.

PARA 620 SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

PARA 630 SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

BCHM 611 PARASITE BIOCHEMISTRY AND HOST DEFENCE MECHANISMS
Respiration of parasites; nutrition and metabolism; biochemistry of parasites with special emphasis on DNA analysis; recombinant DNA technology; monoclonal antibody preparation and uses.

BCHM 613 MECHANISMS OF ACTION OF ANTI-MICROBIAL COMPOUNDS

CROP 692 BIOMETRY

BCHM 400 MOLECULAR BIOLOGY

2. BIODIVERSITY STUDIES
YEAR I

Core Courses
BIOS 601  Environmental Studies  3
BIOS 602  Population Ecology  3
BIOS 603  Advanced Animal Ecology  3
BIOS 604  Mini-Projects  3
BIOS 605  Biology and Ecology of Tetrapods  4
BIOS 606  Tetrapod Conservation Biology  3
BIOS 607  Field Techniques  4
BIOS 620  Seminar I  3
CROP 692  Biometry  3

Elective Courses
*ESCI 605  Remote Sensing  4
*ESCI 606  Environmental Impact Assessment  3
*ESCI 612  Forest Resource Management  3
**BOTN 613  Ecological Methods  4
**BOTN 616  Conservation of Biological Resources  4

*Offered by Environmental Science Programme
**Offered by Botany Department

YEAR II
BIOS 600: Research and Thesis  30
BIOS 630: Seminar II  3

COURSE DESCRIPTIONS

BIOS 601  ENVIRONMENTAL STUDIES

BIOS 602  POPULATION ECOLOGY

BIOS 603  ADVANCED ANIMAL ECOLOGY

BIOS 604  MINI-PROJECTS
Practical supplement to the various core courses in which students select topics of interest, devise and undertake field studies either individually or in groups, with written individual reports
for assessment.

BIOS 605  BIOLOGY AND ECOLOGY OF TETRAPODS

BIOS 606  TETRAPOD CONSERVATION BIOLOGY

BIOS 607  FIELD TECHNIQUES

BIOS 610  SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

BIOS 620  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

ESCI 605  REMOTE SENSING
The principles and application of remote sensing for use in geographic, geological, hydrological, environmental studies, and meteorological monitoring.

ESCI 606  ENVIRONMENTAL IMPACT ASSESSMENT
The identification and assessment of environmental impacts of development and their implication in the overall decision-making process. Mitigation of impacts on physical, social and biological systems. Environmental Impact Assessment as a tool for achieving sustainable development.

ESCI 612  FOREST RESOURCES MANAGEMENT
Climate, soil and plant-growth interrelationships on the structure, composition and functioning of plant communities of the different vegetation types of in West Africa. Forest dynamics and study of both temporal and spatial changes. Animal-plant interactions. Forest and wildlife management.

BOTN 613  ECOLOGICAL METHODS

BOTN 616 CONSERVATION OF BIOLOGICAL RESOURCES

3. FRESHWATER BIOLOGY

YEAR I

CORE COURSES
FWBI 601 Physical Limnology 3
FWBI 602 Typology of Freshwaters 2
FWBI 603 Chemical Limnology 3
FWBI 604 Mini-Projects 3
FWBI 605 Integrated Water Resource Management 3
FWBI 606 Freshwater Flora and Fauna 3
FWBI 620 Seminar 3
FWBI 607 Field Techniques 4

ELECTIVE COURSES:
(A minimum of 3 credits to a maximum of 9 credits are to be selected per semester, depending on availability of courses and the advice of Departmental Graduate Studies Board. Courses may also be selected from other graduate programmes)

FWBI 608 Advanced Physical Limnology 3
FWBI 609 Ecotoxicology and Freshwaters 2
FWBI 610 Advanced Chemical Limnology 3
FWBI 611 Hydro-development and Freshwaters 2
FWBI 612 Freshwater Pollution 3
FWBI 613 Freshwater Ecology 4
FWBI 614 Wetlands 3

YEAR II
FWBI 600 Thesis Research 30
FWBI 630 Seminar II 3

COURSE DESCRIPTIONS:
FWBI 601  PHYSICAL LIMNOLOGY

FWBI 602  TYPOLOGY OF FRESHWATERS

FWBI 603  CHEMICAL LIMNOLOGY
Sources of salinity; pathways of natural elements, major ions, conservative and non-conservative ions; interactions between particulate and dissolved constituents of freshwaters. Chemistry of saline lakes; nutrients and micronutrients. Chemical cycles in nature.

FWBI 604  MINI-PROJECTS
Practical supplement to Physical and Chemical Limnology courses. Students work using the team approach on a lotic or lentic system to present individual reports on the ecological character of the systems.

FWBI 605  INTEGRATED WATER RESOURCE MANAGEMENT
Basins as integrated systems; management of aquatic resources; influence of land-based activities on freshwaters. Trans-boundary approaches for management of shared river basins. Stakeholder analysis and preparation of management plans; role of the Environmental Impact Assessment process.

FWBI 606  FRESHWATER FLORA AND FAUNA
Microbiology and meiofaunal studies of freshwater organisms; ecology of freshwater plants, invertebrates, and vertebrates; systematics of freshwater invertebrates and vertebrates; physiology of freshwater organisms, including biochemical adaptations to special conditions such as thermal, hyper-saline, and anoxic environments.

FWBI 607  FIELD TECHNIQUES
Experimental design and data analysis; statistical computing with special reference to Ecology. Aquatic field and laboratory methods, including use of GPS and GIS techniques. Rapid Aquatic Appraisal methods; field taxonomy. Care and maintenance of field equipment.

FWBI 608  ADVANCED PHYSICAL LIMNOLOGY

FWBI 609  ECOTOXICOLOGY AND FRESHWATERS
Principles of ecotoxicology. Eco-toxicological tests and water quality; LD50 and LC50 biochemical markers.

FWBI 610  ADVANCED CHEMICAL LIMNOLOGY
Speciation of elements in freshwater; processes occurring at the sediment-water interface; biochemical cycles and spirals; redox chemistry of freshwaters; chemistry of freshwater sediments and inundated soils.

FWBI 620  SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

FWBI 630  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

FWBI 611  HYDRO-DEVELOPMENT AND FRESHWATERS

FWBI 612  FRESHWATER POLLUTION
Chemical nature of key pollutants of water; pollution pathways and fate of pollutants. Eutrophication, biomagnification, POPs, PAHCs. Assessment and management of pollutants in aquatic systems. Rehabilitation of polluted habitats.

FWBI 613  FRESHWATER ECOLOGY

FWBI 614  WETLANDS
Wetland classification, environment evolution, physical and biological characteristics, functions, values, attributes. Biotic and abiotic processes and interactions in wetland environments; wetlands as threatened ecosystems; management of wetlands; Ramsar Convention.

M. PHIL ENTOMOLOGY
(INSECT SCIENCE PROGRAMME)

INTRODUCTION
The Insect Science Programme at the University of Ghana provides an international course for the training of entomologists at the Masters’ degree level for the West Africa Sub-region. This programme was initiated on the recommendation of the Academic Board of the African Regional Postgraduate Programme in Insect Science (ARPPIS) based at the International Centre for Insect Physiology and Ecology (ICIPE) in Nairobi, Kenya. There are currently three sub-regional Centres of this programme operating in Africa. One for Southern Africa at the University of Zimbabwe at Harare, a second one for North and Eastern Africa at the Addis Ababa University in Ethiopia and the third one for West Africa at the University of Ghana, Legon.
At this University, the programme is administered as an inter-faculty course between the School of Agriculture and the Faculty of Science, with the Departments of Crop Science and Zoology as the collaborating Departments.

ENTRY REQUIREMENT
A good first degree in Agriculture, Zoology, Biology or related field and must have taken a basic course in Entomology in their undergraduate programme.

Course Unit Requirements
The M.Phil Entomology is a four-semester programme embodying course work in the first year plus another year of research relating to thesis on an approved topic.

In the first year, a number of Core courses (23 credits) plus Seminar and Elective courses (up to 10 credits) are to be taken by students.

- During the Inter semester break of the first year, students visit various research establishments in the country for fieldwork.
- The second year is devoted to research, thesis writing and submission (30 credits).
- Total credit hours required for completing the MPhil Entomology is 69.

YEAR ONE

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 601</td>
<td>Systematics</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 603</td>
<td>Functional Morphology of Insects</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 604</td>
<td>Insecticide Science</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 605</td>
<td>Insect Physiology and Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 607</td>
<td>Insect Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 609</td>
<td>Research Methods and Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 610</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 612</td>
<td>Integrated Pest and Vector Management</td>
<td>3</td>
</tr>
<tr>
<td>CROP 629</td>
<td>Biometry/ Statistics for biologists</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT 601</td>
<td>Biotechnology Concepts</td>
<td>3</td>
</tr>
<tr>
<td>BIOT 602</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 602</td>
<td>Agricultural Pests</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 606*</td>
<td>Disease Vectors of Medical and Veterinary Importance</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 608*</td>
<td>Stored Products Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 616</td>
<td>Forest Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 618</td>
<td>Urban Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 622</td>
<td>Applied Insect Taxonomy</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ENTO 624</td>
<td>Pesticide Application Technology</td>
<td>3</td>
</tr>
<tr>
<td>CROP 693</td>
<td>Agricultural Production. Syst. &amp; Sustainable Rural Livelihoods</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 620</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

* ENTO 606 cannot be combined with ENTO 608

**YEAR TWO**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 600</td>
<td>Thesis</td>
<td>30</td>
</tr>
</tbody>
</table>

**BIOT 601 BIOTECHNOLOGY CONCEPTS**

This course provides a comprehensive overview of the key concepts in molecular biology, Prokaryotic and Eukaryotic cell. Nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure, and regulation of gene expression in prokaryotes and eukaryotes. Principles of energy metabolism, protein structure, enzyme mechanisms and regulation. Methods in recombinant DNA technology, Microarrays. Historical Development of Biotechnology, and Applications.

**BIOT 602 BIOINFORMATICS**

This course explores the theory and practices of computer-based analysis of biological sequence information. Molecular database searching, sequence alignment, phylogenetics, oligonucleotides design, secondary structure analysis, functional motif searches. Integrated information retrieval and analysis. Analysis of software set up and usage, sequence analysis over the internet and interpretation of results. Basic computer concepts of UNIX operating system, relational databases, structured programming and object-oriented programming.

**ENTO 601 SYSTEMATICS**


**ENTO 602 AGRICULTURAL PESTS**

The concept of pest, development of pest situations and when to control pests; survey of pests of crops, including important non-insect pests such as mite, nematodes, birds and rodents; Critical review of the biology, ecology, damage and management of major pests of selected important crops emphasizing on the use of the Integrated Production and Pest Management approach from the following: Vegetables and spices, cereals, legumes, plantains, root & tuber crops, fruit and plantation/industrial crops, beverage crops, ratoon crops; Study of pests of major economic importance in Africa: migrant pests (e.g. locusts, grasshoppers armyworms, quelea birds etc.) The course links up for inputs from scientists and Visiting lecturers from International and National Research Institutions.

**ENTO 603 FUNCTIONAL MORPHOLOGY OF INSECTS**

Basic organization and evolution of the insect head and mouthparts; functioning of mouthparts of
selected insects. Modifications of the insect neck and thorax including adaptations of legs. The insect wing; Major modifications of spiracles and tracheae; Appendages and processes of the abdomen, including full treatment of genitalia. Stridulation, Morphological modification of alimentary, respiratory, reproductive and nervous systems in insects. Embryonic and post-embryonic development.

ENTO 604 INSECTICIDE SCIENCE

a. Insecticide application
Introduction to pesticide application – ground application, types of sprayers and nozzles, calibration and use of spray equipment in pesticide application, safety aspects of application, maintenance of equipment.

b. Toxicology
Pesticides and pest control, General principles of toxicology and aspects of insect physiology related to toxicology. Development evaluation and consumption of insecticides. Types of Insecticides formulation and modes of action. Effects of insecticides on non-target organisms. Insecticide resistance and its management. Biochemical modes of action of insecticides and insect growth regulators; Toxicodynamics and selective toxicities of insecticides; metabolism of insecticides and its relation to resistance; environmental problems of insecticide use; insecticide residue determination and analysis- basic knowledge of residue isolation and analytical procedures.

ENTO 605 INSECT PHYSIOLOGY & BIOCHEMISTRY
A system approach to the major functional categories of insect life: feeding, gas exchange, homeostasis, locomotion, reproduction, development, communication and their interrelations. The alimentary and circulatory systems; integument, respiratory and excretory systems; the sensory, nervous, muscular, endocrine and exocrine systems. The reproductive system and development; unusual modes of reproduction and other adaptive processes that enhance the success of insects.


ENTO 606 DISEASE VECTORS OF MEDICAL AND VETERINARY IMPORTANCE
Arthropod vectors of diseases; taxonomy, biology, and incrimination of vector capacity, ecology of vectors, Epidemiology of vector-borne diseases, Parasites transmitted by insect vectors, life cycle and symptomatology of diseases; animal reservoirs, Vector control methods as applied to blackfly, tsetsefly, mosquitoes, ticks and mites. Emerging disease vectors of medical and veterinary importance.
ENTO 607    INSECT ECOLOGY

a.     Terrestrial
Practical and theoretical aspects of ecology, Properties of populations; methods of estimating population size and population dispersion, Sampling techniques, Measurement and description of factors regulating populations, Construction and analysis of life tables and their application, Biotic associations and community structure, Intra-and interspecific competition, prey-predator, and host-parasite relationships as applied to pest management. Social systems and behaviour in insects, Forests and savannah insects; seasonal phenomena in tropical insects; pest migrations, Impact of pesticides on the environment and community, Ecological foundations of the analysis of biological control, Population modeling and systems analysis.

b.     Aquatic
Insects in lotic, lentic and astatic systems: their identification, classification and biology, Insect activity patterns, Role of insects in aquatic ecosystems.

ENTO 608    STORED PRODUCTS ENTOMOLOGY
Human population growth and the global food problem, the post-harvest system: nature and components. The concept of stored products; the stored products environment; factors that affect the stored products environment and their role, Damage and food loss in the post-harvest systems; types and causes of loss; the role of causal agents, Loss assessment methods, Origin of stored products pests, Survey of stored –product pests, Biology of major stored product insect pests, Review of storage systems of the tropics, Control of stored product insect pests, Modern trends in pest control in the post-harvest system.

ENTO 609    RESEARCH METHODS AND PROJECT MANAGEMENT
Modern scientific techniques in research initiation; conduction, analysis and write-up. The use of computers in Literature searches, data collection and analysis, and write-up. Rapid methods of reviewing the literature and scientific writing. Other techniques such as insect rearing, photography slide preparation and other forms of presentation. Introduction to general Management Aspects of organizational behaviour (Interpersonal skills, work motivation, team work), leadership skills, ethics and social responsibilities. Proposal writing and fund management; Project information management, Project evaluation and impact assessment; Strategic project management.

ENTO 612    INTEGRATED PEST AND VECTOR MANAGEMENT
Formulation of pest problems, economic assessment of losses due to pests and vectors, Decision making to control pests. Evolution and development of IPM. Ecological basis of pest and vector management. Pest forecasting, transgenic plants (GMOs) and Quarantine regulations.

Multidisciplinary approach, integration of multiple strategies, knowledge and intensive information, systems approach, risk minimization (safety, profitability and durability), linking agriculture with environment, biodiversity, human health and sustainability, sophisticated higher technologies and low conventional technologies, useful environment as education tool for
extension workers, farmers and general public.

Policy framework; pest diagnostic and monitoring tools/techniques and services; Biotechnology and biopesticides; Precision agriculture technology and GIS; biological pest management; Information, communication and education; farmer empowerment through IPPM, International initiatives in IPM.

Economic significance of agricultural production systems, Environmental and human health impact of production systems, environmental management.

**CROP 629 BIOMETRY**
Topics include probability theory and distributions; Population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportion; and the chi-square statistic; and nonparametric methods. The course will provide students a foundation to evaluate information critically to support research objectives and product claims and a better understanding of statistical design of experimental trials for biological products/devices.

**ENTO 616 FOREST ENTOMOLOGY**
An introduction to forest types in Ghana, General description of the major groups of forest insect pests: Defoliators/leaf feeders and woodborers of living plants, Life history, damage and management of serious forest insect pests of living plants, Special reference to pests of commercial and economic plants, Pests of flowers, fruits and seeds of high value tree species and exotic plants, Biology and management of pests of logs, lumber and other forest products; ambrosia beetles, powder post beetles, wood borers, Detailed treatment of the biology and management of termites in forest ecosystems: nutrient cycling, water penetration, soil aeration, soil formation and profile movement.

**ENTO 618 URBAN ENTOMOLOGY**
An introduction to insect pests of humans in and around buildings, insect pest problems associated with urbanization and in recreational areas. Identification and description of the major groups of urban insect pests: wood destroying insects, pests on or near food, pests of stored food products, pests of fabrics and paper, pests attacking humans and pets, pests of house plants and miscellaneous pests associated with the urban environment. Damage symptoms, biology and management of urban insect pests. The role of the pest control operator in the community. Nuisance pests on ornamentals, pests of urban agricultural systems.

**ENTO 622 APPLIED INSECT TAXONOMY**
Biological Species concept and its application, International code of Zoological Nomenclature, Taxonomic characters and techniques: Cytotaxonomy, Bioacoustics, Morphometrics, Chemotaxonomy and Molecular Taxonomy, Computer aided Taxonomy, construction and use of Taxonomic Keys. Identification and Diagnosis of insects of Agricultural, Environmental, Veterinary and Medical Importance with special reference to pests, Natural enemies, vectors and Bioindicators; use of indicators in habitat and ecosystem analysis, international Conventions on insect conservation, collection and curatorial techniques, Value and Management of Entomological collections.

**ENTO 624 PESTICIDE APPLICATION TECHNOLOGY**
Pesticide Application for Insect pest / Vector / Disease and Weed control strategies; Methods of
application, including availability of appropriate application and safety equipment; Mode of action
of pesticides and choice of equipment; main types of spray application; The biological target
(volume of spray: spray distribution and coverage); Current advances in pesticide application;
Spray droplet production, sampling and measurement; Calibration of spray equipment; Integration
of pesticide application in pest/vector management; Management of agricultural equipment and
chemicals at Research centres and at farm level; (storage, transportation and safety aspects of
pesticide application).

CROP 693 AGRICULTURAL PRODUCTION SYSTEMS AND
SUSTAINABLE RURAL LIVELIHOODS
Diversity of Africa agricultural production systems; the agricultural production chain-production,
storage, transportation and marketing, processing, utilization and value addition; stakeholders in
agricultural production systems; urban agricultural production systems; crop production; livestock
production/livestock integration production systems, Economic significance of agricultural
production systems; environmental and human health impact of production systems, Promoting
sustainable production; environmental management, farmer empowerment, farmer learning groups
and field schools, concepts of Integrated production and pest/vector management, participatory
technology development, PTD; concepts of participatory Development communication.

ENTO 610 SEMINAR I
In the first semester of year 1, students are expected to attend all seminars specified and are to
make their own presentations on selected topics to an audience to earn credits. Each student is
expected to make at least one oral presentation to be assessed each semester and then present a full
write-up of the presentation for another assessment.

ENTO 620 SEMINAR II
In the second semester of the first year, each student will be required to make a Thesis Research
Proposal presentation and write-up for assessment.

ORAL EXAMINATION
There will be an Oral examination based on the thesis submitted for the award of the MPhil
Entomology degree.

M.PHIL ENVIRONMENTAL SCIENCE
The aim of the M.Phil Programme in Environmental Science is to provide graduate education in
the causes, effects and control of environmental problems, particularly in Ghana, for graduates in
the basic sciences and closely related disciplines. The role of the environmental scientist is seen
as of responsibility for monitory, investigational and advisory functions in the management of
the environment. The programme comprises of two semesters of taught courses followed by one
year’s research from the area of specialization. The syllabus is divided into two sections.
Candidates are required to choose a minimum of two out of the courses in Section B, which are
electives.

ADMISSION REQUIREMENTS
A degree in science or its equivalent acceptable to the Graduate Board. An appropriate professional qualification accepted as equivalent to a Degree.

M.PHIL ENVIRONMENTAL SCIENCE COURSES

SECTION A
Human Population and Urbanization
Environmental Economics
Environmental Impact Assessment
Remote Sensing
Soil, Water and Air Quality
Environmental Law

SECTION B
Water Resource Management
Forest Resource Management
Environmental Chemistry
Atmospheric and Environmental Physics
Environmental Geology

NB. Subject to the availability of staff, other options will be added.

YEAR I

Courses
ESCI 601 Soil Water and Air Quality 4
ESCI 602 Environmental Economics 3
ESCI 603 Human Population and Urbanization 3
ESCI 604 Environmental Law 3
ESCI 605 Remote Sensing 4
ESCI 606 Environmental Impact Assessment 3
ESCI 607* Environmental Chemistry 3
ESCI 608* Atmospheric and Environmental Physics 3
ESCI 609* Water Resource Management 3
ESCI 610* Environmental Geology 3
ESCI 612* Forest Resource Management 3

ESCI 601-606 are Core Courses to be taken by all candidates.

*Elective (Candidates to select at least, one Elective Course each semester)

YEAR II
(Requirements of 36 credits)

ESCI 600 Research Thesis 30
ESCI 620 Seminar I 3
ESCI 630 Seminar II 3
COURSE DESCRIPTIONS

ESCI 601  SOIL, WATER AND AIR QUALITY
Properties of various classes of pollutants and processes determining the fate of pollutants. Treatment of industrial waste and sewerage. Hydrological concepts and their impact on water quality. Soil characteristics and biological activities in soil and chemical degradation in soil, including monitoring the rehabilitation of chemically and physically degraded sites.

ESCI 602  ENVIRONMENTAL ECONOMICS
A study of the application of economic theory to the problems of ecology. Topics include the interplay of supply and demand and the notion of the market, benefit-cost analysis and social decision making, and sustainable development.

ESCI 603  HUMAN POPULATION AND URBANIZATION
A study of the structure of human population, population regulation factors and the relationship between human population growth, resource use, technology and the ecosystem. Urbanization with special reference to land-use, slum and squatter settlements.

ESCI 604  ENVIRONMENTAL LAW
Regulatory mechanisms that address environmental problems related to development including constitutional responsibilities and powers with respect to environmental planning and management.

ESCI 606  ENVIRONMENTAL IMPACT ASSESSMENT
The identification and assessment of environmental impacts of development and their implication in overall decision-making process. The mitigation of the impacts on physical, social and biological systems. Environmental Impact Assessment as a tool for achieving sustainable development.

ESCI 607  REMOTE SENSING
The Principles and application of remote sensing for use in geographic, geological, hydrological and environmental studies, and in meteorological monitoring.

ESCI 607  ENVIRONMENTAL CHEMISTRY
The course covers the chemical nature of the key pollutants of air, soils and freshwater and marine bodies, the effects of the pollutants in the environment and management of the pollutants. The chemistry of the major industries, and their problems in relation to the environment and their alternatives.

ESCI 608  ATMOSPHERIC AND ENVIRONMENTAL PHYSICS
The course deals with the important aspects of meteorology and characteristics of the earth systems – the atmosphere, oceans and solid earth and the effect of landforms on climate and environment. The role of ozone, carbon dioxide, minor constituents and aerosols.

ESCI 609  WATER RESOURCE MANAGEMENT
Determinants of the biological status and quality of river systems coastal waters, and studies on the effects of pollutants on aquatic ecosystems. Monitoring strategies and standards for pollution
control. Integrated coastal Management. Fisheries exploitation and management.

**ESCI 610  ENVIRONMENTAL GEOLOGY**
The course covers aspects of geochemistry related to the environment, and the supply, conservation and quality of groundwater and surface water. Other major areas of the course include the nature and effects of geologic hazards, and technologies for minimizing the hazards.

**ESCI 612  FOREST RESOURCE MANAGEMENT**
Climate, soil and plant growth interrelationships on the structure, composition and functioning of plant communities of the different vegetation types in West Africa. Forest dynamics and study of both temporal and spatial changes. Animal-plant interactions. Forest and wildlife management. Agricultural system and soil conservation.

**ESCI 620  SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**ESCI 630  SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**SCHOOL OF NUCLEAR AND ALLIED SCIENCES (SNAS)**

**INTRODUCTION**
The School of Nuclear And Allied Sciences (SNAS) jointly established by the University of Ghana (UG) through the agency of the Faculty of Science and the Ghana Atomic Energy Commission (GAEC) and in co-operation with the International Atomic Energy Agency (IAEA), Vienna, offers accredited Master of Philosophy (M.Phil) and Doctor of Philosophy (PhD) programmes in the following areas of specialization:

1. Applied Nuclear Physics
2. Medical Physics (In collaboration with the School of Allied Health Sciences)
3. Radiation Protection
4. Nuclear and Environmental Protection
5. Nuclear and Radiochemistry
6. Nuclear Engineering
7. Nuclear Agriculture
8. Radiation Processing
9. Computational Nuclear Sciences and Engineering
10. Nuclear Earth Sciences

**MPHIL IN APPLIED NUCLEAR PHYSICS**

**YEAR 1**

**Core Courses**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAP 601</td>
<td>Principles of Nuclear Physics</td>
<td>3</td>
</tr>
<tr>
<td>NENG 601</td>
<td>Basic Reactor Physics</td>
<td>3</td>
</tr>
<tr>
<td>NENG 603</td>
<td>Types of Reactors</td>
<td>2</td>
</tr>
<tr>
<td>NENG 607</td>
<td>Health Physics and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NENG 611</td>
<td>Computational Methods in Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 602</td>
<td>Nuclear Instrumentation and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>NSAP 604</td>
<td>Radiation Dosimetry</td>
<td>4</td>
</tr>
<tr>
<td>NSAP 612</td>
<td>Practical Exercises</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

**Elective Courses**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAP 603</td>
<td>X-ray Fluorescence Spectroscopy (XRF)</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 605</td>
<td>Accelerator Physics</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 606</td>
<td>Neutron Activation Analysis (NAA)</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 608</td>
<td>Solid State Nuclear Track Detection (SSNTD)</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
</tbody>
</table>

**MPHIL IN NUCLEAR AND RADIOCHEMISTRY**

**YEAR 1**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAP 627</td>
<td>Introduction to Nuclear and Radiochemistry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 629</td>
<td>Types and Chemistry of Radioactive decay</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>NSAP 627</td>
<td>Introduction to Nuclear and Radiochemistry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 637</td>
<td>Radiological Protection and Nuclear Safety</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 653</td>
<td>Hazardous Chemicals</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 655</td>
<td>Human Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 657</td>
<td>Environmental Toxicology</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 659</td>
<td>Environmentally Sound Management of Toxic Chemicals</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 661</td>
<td>Occupational Health and Safety</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 652</td>
<td>Radioactive and Urban Waste Management.</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 654</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 658</td>
<td>Multi Elemental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 662</td>
<td>Radionuclide Measurements</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 664</td>
<td>Environmental Hydrogeology</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

**MPHIL IN NUCLEAR AND ENVIRONMENTAL PROTECTION**

**YEAR 1**
MPHIL IN NUCLEAR EARTH SCIENCES

Year 1

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 631</td>
<td>Interaction of Radiation with Matter</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 633</td>
<td>Radioisotope Production Techniques</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 637</td>
<td>Radiological Protection and Nuclear Safety</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 677</td>
<td>Nuclear Geochemistry</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 679</td>
<td>Nuclear Geophysics</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 681</td>
<td>Current Topics in Nuclear Earth Science</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 683</td>
<td>Stable Isotope Geochemistry</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 685</td>
<td>Research and Field Methods in Nuclear Earth Science</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 628</td>
<td>Nuclear Activation Analysis and Allied Analytical Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 676</td>
<td>Nuclear Applications in Hydrology and Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 678</td>
<td>Geology of High-level Nuclear Waste Disposal</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 602</td>
<td>Nuclear Instrumentation and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>NSAP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 607</td>
<td>Trace Element Geochemistry</td>
<td>2</td>
</tr>
<tr>
<td>GEOL 615</td>
<td>Aqueous Geochemistry</td>
<td>2</td>
</tr>
<tr>
<td>NENG 653</td>
<td>Computational Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>GEOL 678</td>
<td>Environmental Geophysics</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 634</td>
<td>Nuclear Dating Methods</td>
<td>2</td>
</tr>
</tbody>
</table>

MPHIL IN NUCLEAR AGRICULTURE

There are two areas of specialization. Choose one option.

1. **Mutation Breeding And Plant Biotechnology**

YEAR 1

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 601</td>
<td>Radioisotopes, Radiations and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NARP 605</td>
<td>Principles of Genetics</td>
<td>2</td>
</tr>
</tbody>
</table>
### Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 633</td>
<td>Sustainable Agricultural Production</td>
<td>3</td>
</tr>
<tr>
<td>CROP 641</td>
<td>Plant Virology and Viral Diseases</td>
<td>3</td>
</tr>
<tr>
<td>NARP 606</td>
<td>Crop Pests and Vector Management</td>
<td>3</td>
</tr>
<tr>
<td>NARP 608</td>
<td>Molecular Genetics and Genetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NARP 612</td>
<td>Plant Tissue Culture</td>
<td>3</td>
</tr>
<tr>
<td>NARP 614</td>
<td>Post-Harvest Physiology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 632</td>
<td>Nuclear Techniques in Crop Nutrition Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

### 2. Soil Water And Crop Nutrition

#### YEAR 1

##### Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 601</td>
<td>Radioisotopes, Radiations and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NARP 609</td>
<td>Plant Physiology and Morphogenesis</td>
<td>3</td>
</tr>
<tr>
<td>NARP 631</td>
<td>Soil Fertility and Management</td>
<td>2</td>
</tr>
<tr>
<td>SOIL 603</td>
<td>Soil Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 605</td>
<td>Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>NARP 602</td>
<td>Radiobiology and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NARP 622</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>NARP 632</td>
<td>Nuclear Techniques in Crop Nutrition Studies</td>
<td>3</td>
</tr>
<tr>
<td>NARP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

##### Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 614</td>
<td>Advanced Soil Physics</td>
<td>3</td>
</tr>
<tr>
<td>NARP 607</td>
<td>Plant Genomics and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>NARP 633</td>
<td>Sustainable Agricultural Production</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 676</td>
<td>Nuclear Applications in Hydrology and Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 636</td>
<td>Water Management</td>
<td>3</td>
</tr>
</tbody>
</table>
MPHIL IN RADIATION PROCESSING

There are three areas of specialization. Choose one option.

1. Radiation Processing (Food, Medical Supplies And Polymers)

YEAR I

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 601</td>
<td>Radioisotopes, Radiations and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NARP 663</td>
<td>Stored Products Entomology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 651</td>
<td>Radiation Applications in Post-Harvest systems</td>
<td>3</td>
</tr>
<tr>
<td>NARP 653</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 655</td>
<td>Radiation Processing of Food and Medical Products</td>
<td>3</td>
</tr>
<tr>
<td>NARP 657</td>
<td>Food and Industrial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 607</td>
<td>Radiobiology and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NARP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NARP 622</td>
<td>Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>NARP 652</td>
<td>Radiation Processing of Industrial Products/Polymers and Environmental Waste</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 655</td>
<td>Agricultural Finance</td>
<td>3</td>
</tr>
<tr>
<td>NARP 659</td>
<td>Marketing of Agricultural Produce and Trade Regulations</td>
<td>3</td>
</tr>
<tr>
<td>NARP 671</td>
<td>Seed Preservation and Management</td>
<td>3</td>
</tr>
<tr>
<td>NARP 656</td>
<td>Micro-enterprise Development and Management</td>
<td>3</td>
</tr>
<tr>
<td>NARP 658</td>
<td>Packaging of Irradiated Products and Environmental Issues</td>
<td>3</td>
</tr>
<tr>
<td>NARP 662</td>
<td>Applied Entomology</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Radiation Entomology

YEAR 1

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 601</td>
<td>Radioisotopes, Radiation and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NARP 651</td>
<td>Radiation Applications in Post-Harvest Systems</td>
<td>3</td>
</tr>
<tr>
<td>NARP 661</td>
<td>General Entomology</td>
<td>2</td>
</tr>
<tr>
<td>NARP 663</td>
<td>Stored Products Entomology</td>
<td>3</td>
</tr>
</tbody>
</table>
NARP 673  Radioisotope and Radiation Techniques in Entomology  3
MPHY 607  Radiobiology and Radiation Protection  3
NARP 610  Seminar 1  3
NARP 622  Design and Analysis of Experiments  2
NARP 664  Integrated Insect Pest and Vector Management  3
NARP 668  Genetic Control of Insect Pests Using Sterile Insect Techniques (SIT)  3
SNAS 602  Nuclear Law and Legislation  2

Electives

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 649</td>
<td>Remote Sensing and Geographic Information System</td>
<td>3</td>
</tr>
<tr>
<td>NARP 665</td>
<td>Medical and Veterinary Entomology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 655</td>
<td>Radiation Processing of Food and Medical Products</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 604</td>
<td>Insecticide Science</td>
<td>3</td>
</tr>
<tr>
<td>NARP 608</td>
<td>Molecular Genetics and Genetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NARP 656</td>
<td>Micro-enterprise Development and Management</td>
<td>3</td>
</tr>
<tr>
<td>NARP 662</td>
<td>Applied Entomology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 666</td>
<td>Medical and Veterinary Entomology</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Food Science And Post-Harvest Technology

YEAR I

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 601</td>
<td>Radioisotopes, Radiations and Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NARP 651</td>
<td>Radiation Applications in Post-Harvest Systems</td>
<td>3</td>
</tr>
<tr>
<td>NARP 653</td>
<td>Food Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 667</td>
<td>Chemistry of Irradiated Foods</td>
<td>3</td>
</tr>
<tr>
<td>NARP 669</td>
<td>Food Safety and Quality Assurance</td>
<td>2</td>
</tr>
<tr>
<td>NARP 657</td>
<td>Food and Industrial Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 607</td>
<td>Radiobiology and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NARP 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NARP 622</td>
<td>Design and Analysis of Experiments</td>
<td>2</td>
</tr>
<tr>
<td>NARP 672</td>
<td>Food Analysis and Sensory Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARP 659</td>
<td>Marketing of Agricultural Produce and trade regulations</td>
<td>3</td>
</tr>
<tr>
<td>NARP 661</td>
<td>General Entomology</td>
<td>3</td>
</tr>
<tr>
<td>NARP 665</td>
<td>Agricultural Finance</td>
<td>3</td>
</tr>
<tr>
<td>NARP 608</td>
<td>Molecular Genetics and Genetic Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>
NARP 656 Micro-enterprise Development and Management 3
NARP 658 Packaging of irradiated products and Environmental Issues 3

**MPHIL IN MEDICAL PHYSICS**

**YEAR 1**

**Core Courses**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHY 601</td>
<td>Selected topics in Anatomy, Physiology and Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 605</td>
<td>Radiation Physics</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 607</td>
<td>Radiobiology and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 609</td>
<td>Electronics, Instrumentation, Signal Analysis, Imaging and Display</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 611</td>
<td>Dosimetry for Photon and Electron Beams</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 613</td>
<td>Practicals in Radiation Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 615</td>
<td>Practicals in Radiotherapy</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>MPHY610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 617</td>
<td>Clinical Practice in Radiotherapy, Diagnostic Radiology and Nuclear Medicine at the Hospital I</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 602</td>
<td>Ultrasonics, Theory, Instrumentation and Practice</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 604</td>
<td>NMR Spectroscopy and Imaging</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 606</td>
<td>X-Rays and Diagnostic Radiology</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 608</td>
<td>Nuclear Medicine</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 612</td>
<td>Radiotherapy</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 614</td>
<td>Applications of Digital Computers, Lasers and Ultraviolet Radiation in Medicine</td>
<td>2</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 616</td>
<td>Clinical Practice in Radiotherapy, Diagnostic Radiology and Nuclear Medicine at the Hospital II</td>
<td>2</td>
</tr>
</tbody>
</table>

**MPHIL IN NUCLEAR ENGINEERING**

There are two areas of specialization. Choose one option.

1. **Reactor Physics**

**YEAR 1**

**Core Courses**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPHY 601</td>
<td>Selected topics in Anatomy, Physiology and Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 607</td>
<td>Radiobiology and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 609</td>
<td>Electronics, Instrumentation, Signal Analysis, Imaging and Display</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 611</td>
<td>Dosimetry for Photon and Electron Beams</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 613</td>
<td>Practicals in Radiation Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 615</td>
<td>Practicals in Radiotherapy</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>MPHY610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 617</td>
<td>Clinical Practice in Radiotherapy, Diagnostic Radiology and Nuclear Medicine at the Hospital I</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 602</td>
<td>Ultrasonics, Theory, Instrumentation and Practice</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 604</td>
<td>NMR Spectroscopy and Imaging</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 606</td>
<td>X-Rays and Diagnostic Radiology</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 608</td>
<td>Nuclear Medicine</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 612</td>
<td>Radiotherapy</td>
<td>4</td>
</tr>
<tr>
<td>MPHY 614</td>
<td>Applications of Digital Computers, Lasers and Ultraviolet Radiation in Medicine</td>
<td>2</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
<tr>
<td>MPHY 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>MPHY 616</td>
<td>Clinical Practice in Radiotherapy, Diagnostic Radiology and Nuclear Medicine at the Hospital II</td>
<td>2</td>
</tr>
</tbody>
</table>
NENG 601 Basic Reactor Physics 3
NENG 603 Types of Reactors 2
NENG 605 Nuclear Heat Transfer and Fluid Flow 3
NENG 607 Health Physics and Radiation Protection 3
NENG 609 Radiation Detection 2
NENG 611 Computational Methods in Engineering 2
NSAP 613 Research Methods and Scientific Communications 2
NENG 610 Seminar 1 3
SNAS 602 Nuclear Law and Legislation 2
NENG 602 Reactor Statics 3
NENG 604 Reactor Dynamics 3
NENG 606 Nucleonics 3
NENG 608 Fuel Management 3
NENG 610 Seminar 1 3
NENG 620 Seminar 2 3

Inter-Semester Practicals on Radiation and Health Physics Measurements.

NENG 624 Experiments on radiation measurement: 2
  i. Gamma-Ray spectroscopy using NaI(Tl).
  ii. Study of hydrogenous materials for neutron shielding.

NENG 626: Experiments on Activation Analysis: 2
  i. Measurement of average neutron flux using HPGe detector.
  ii. Determination of manganese in steel using NAA

2. Reactor Engineering

YEAR 1

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NENG 601</td>
<td>Basic Reactor Physics</td>
<td>3</td>
</tr>
<tr>
<td>NENG 603</td>
<td>Types of Reactors</td>
<td>2</td>
</tr>
<tr>
<td>NENG 605</td>
<td>Nuclear Heat Transfer &amp; Fluid Flow</td>
<td>3</td>
</tr>
<tr>
<td>NENG 607</td>
<td>Health Physics and Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NENG 609</td>
<td>Radiation Detection</td>
<td>2</td>
</tr>
<tr>
<td>NENG 611</td>
<td>Computational Methods in Engineering</td>
<td>2</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NENG 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NENG 620</td>
<td>Seminar 2</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
<tr>
<td>NENG 628</td>
<td>Two-Phase Flows and Heat Transfer in Nuclear Systems</td>
<td>3</td>
</tr>
<tr>
<td>NENG 612</td>
<td>Radiation Shielding</td>
<td>3</td>
</tr>
<tr>
<td>NENG 614</td>
<td>Reactor Materials and Radiation Damage</td>
<td>3</td>
</tr>
<tr>
<td>NENG 616</td>
<td>Analysis of Cycles of Nuclear Power Plants</td>
<td>3</td>
</tr>
</tbody>
</table>
Inter-Semester Practicals on Reactor Experiments and Computer Exercises

NENG 618 Reactor Experiments. 2
i. Control Rod Calibration
ii. Measurement of neutron temperatures in the inner and outer irradiation sites

NENG 622: Computer Exercises 2
i. Computer exercises for calculation of reactor parameters
ii. Computer simulation of reactivity transients

MPhil in Computational Nuclear Science and Engineering

Year 1

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NENG 601</td>
<td>Basic Reactor Physics</td>
<td>3</td>
</tr>
<tr>
<td>NENG 605</td>
<td>Nuclear Heat Transfer &amp; Fluid Flow</td>
<td>3</td>
</tr>
<tr>
<td>NENG 651</td>
<td>Mathematical Modeling and Simulations in Nuclear Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NENG 655</td>
<td>Practicals (Scientific Computing Skills)</td>
<td>3</td>
</tr>
<tr>
<td>NENG 653</td>
<td>Nuclear Sciences and Applications</td>
<td>2</td>
</tr>
<tr>
<td>NENG 611</td>
<td>Computational Methods in Engineering</td>
<td>2</td>
</tr>
<tr>
<td>NENG 610</td>
<td>Seminar 1 (Programming Techniques for Artificial Intelligence Computer Graphics Simulation and Visualization)</td>
<td>3</td>
</tr>
<tr>
<td>NENG 652</td>
<td>Monte Carlo Simulations and Applications</td>
<td>3</td>
</tr>
<tr>
<td>NENG 654</td>
<td>Computational Methods in Power Systems (Analysis &amp; Controls)</td>
<td>2</td>
</tr>
<tr>
<td>NENG 656</td>
<td>Computational Optimization (Optimization Methods for System and Control)</td>
<td>2</td>
</tr>
<tr>
<td>NENG 658</td>
<td>Practicals (Programming Skills)</td>
<td>2</td>
</tr>
<tr>
<td>NENG 662</td>
<td>Computational Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear law and Legislation</td>
<td>2</td>
</tr>
<tr>
<td>NENG 620</td>
<td>Seminar 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NENG 661</td>
<td>Parallel Computing, Numerical Algorithms and</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>NENG 663</td>
<td>Heuristic Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>NENG 664</td>
<td>Computational Nuclear and Reactor Physics</td>
<td>2</td>
</tr>
<tr>
<td>NENG 666</td>
<td>Computational Hydrology</td>
<td>2</td>
</tr>
<tr>
<td>NENG 668</td>
<td>Parallel Computing, Numerical Algorithm &amp; Programming</td>
<td>3</td>
</tr>
<tr>
<td>NENG 672</td>
<td>Radiation Damage and Corrosion Models in Nuclear Reactors</td>
<td>3</td>
</tr>
<tr>
<td>NENG 674</td>
<td>Heuristic Problem Solving</td>
<td>3</td>
</tr>
</tbody>
</table>

**MPHIL IN RADIATION PROTECTION**

**YEAR 1**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAS 601</td>
<td>Review of Fundamentals of Radiation Physics</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 603</td>
<td>Radiation Quantities and Measurements</td>
<td>2</td>
</tr>
<tr>
<td>NSAS 605</td>
<td>Biological Effects of Ionizing Radiations</td>
<td>2</td>
</tr>
<tr>
<td>NSAS 609</td>
<td>External and Internal Exposure and dose Assessment</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 611</td>
<td>Sources and Protection Against Non-Ionizing Radiation.</td>
<td>2</td>
</tr>
<tr>
<td>NSAS 619</td>
<td>Intervention for the Protection of the Public in Situations of Chronic and Acute Emergency Exposure</td>
<td>2</td>
</tr>
<tr>
<td>NSAS 617</td>
<td>Demonstrations (During Inter-semester break)</td>
<td>3</td>
</tr>
<tr>
<td>NSAP 613</td>
<td>Research Methods and Scientific Communications</td>
<td>2</td>
</tr>
<tr>
<td>NSAS 610</td>
<td>Seminar 1</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 602</td>
<td>Occupational Radiation Protection</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 604</td>
<td>Medical Exposure in Diagnostic Radiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiotherapy and Nuclear Medicine</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 606</td>
<td>Exposure of the Public due to Practices and Environmental Protection</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 608</td>
<td>Practical Exercises</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 614</td>
<td>Technical Visits and Case Studies</td>
<td>3</td>
</tr>
<tr>
<td>NSAS 616</td>
<td>Regulatory Framework For control of Radiation Sources</td>
<td>2</td>
</tr>
<tr>
<td>SNAS 602</td>
<td>Nuclear Law and Legislation</td>
<td>2</td>
</tr>
</tbody>
</table>
DEPARTMENT OF ANATOMY

M.PHIL PROGRAMME

DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS
A good first degree in Biology or Medical Science with FGPA of at least 3.5 or a basic registrable medical degree (MB.Ch.B or its equivalent).

COURSE STRUCTURE
A candidate is required to take a minimum of 60 credits in 4 semesters. The course credit requirements are as follows:

<table>
<thead>
<tr>
<th>Course Details</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Course work</td>
<td>24 – 36</td>
</tr>
<tr>
<td>• Seminar Presentation I</td>
<td>3</td>
</tr>
<tr>
<td>• Seminar Presentation II</td>
<td>3</td>
</tr>
<tr>
<td>• Thesis</td>
<td>30</td>
</tr>
</tbody>
</table>

YEAR 1

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 601 Gross Anatomy I</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 602 Neuroanatomy</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 603 Gross Anatomy II</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 605 Gross Anatomy III</td>
<td>2</td>
</tr>
<tr>
<td>ANAT 607 Histology</td>
<td>4</td>
</tr>
<tr>
<td>ANAT 604 Anatomical Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>ANAT 609 Embryology</td>
<td>2</td>
</tr>
<tr>
<td>ANAT 606 Genetics and Cytogenetics</td>
<td>2</td>
</tr>
<tr>
<td>ANAT 608 Stereology</td>
<td>1</td>
</tr>
<tr>
<td>ANAT 610 Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>GSPH 601 Biostatistics and Research Methods</td>
<td>2</td>
</tr>
</tbody>
</table>
BIOC 601  Molecular Aspects of Cell Biology (Offered in the Dept. of Medical Biochemistry, UGMS) 3 credits
BIOC 603  Genetic Information Storage, Transmission and Expression (Offered in the Dept. of Medical Biochemistry, UGMS) 3 credits

ELECTIVE COURSES
ANAT 612  Anatomical Techniques II  2 credits
ANAT 614  Anatomical Techniques III  2 credits

ANAT 601, 602, 603, 605, 607 and 609 are based on the approved Level 300 courses and are to be taken on the advice of the Head of Department, supervisor or statutory body established in the Medical School. These courses are intended to lay the foundation for teaching Anatomy.

YEAR II
ANAT 600  Thesis  30 credits
ANAT 620  Seminar II  3 credits

FIELDS OF SPECIALIZATION
1. Neural tube development
2. Cardiac muscle development and ultrastructure
3. Development/Structure of foetal membranes in health and disease
4. Experimental Embryology
5. Cytogenetics

COURSE DESCRIPTIONS

ANAT 601  GROSS ANATOMY I
Introductory Lectures: History of anatomy, introduction to anatomy, anatomical nomenclature, skeletal system, joints, muscular system, circulatory system, nervous system.

Upper limbs. Pectoral region/breast, axilla, brachia, plexus, the hand, joints of the upper limbs.

Thorax: Thoracic cage, lungs and pleurae, mediastinum, the heart.

ANAT 602  NEUROANATOMY
The spinal cord, brainstem (medulla oblongata, pons midbrain), cerebellum, thalamus, basal ganglia and internal capsule, hypothalamus, cerebral cortes, pathways – sensory, motor, visual auditory vestibular and olfactory.

ANAT 603  GROSS ANATOMY II
Head and Neck: Triangles of the neck, cranial nerves, temporal and infratemporal regions, intracranial venous sinuses, the orbit, the ear, larynx, lymphatic drainage of the head and neck.
Abdomen, Pelvis and Perineum: Anterior abdominal wall, inguino-scrotal region, abdominal cavity, kidneys and ureters, pelvic viscera I and II, perineum I and II.

ANAT 605   GROSS ANATOMY III
Lower Limbs: Overview of the lower limb, the gluteal region, venous and lymphatic drainage of lower limb, the foot.

ANAT 604   ANATOMICAL TECHNIQUES I

ANAT 606   HUMAN CYTOGENETICS

ANAT 607   HISTOLOGY
Introduction to histology, histological methods, covering epithelia, glandular epithelium, connective tissue, cartilage and bone, muscle tissue, nervous tissue, nerve and central nervous system, heart, blood, blood formation, blood and lymph vessels, respiratory system I, respiratory system II, alimentary system I, alimentary system II, alimentary system III, liver, gall bladder, pancreas, endocrine glands I endocrine glands II, lymphoid tissues I, lymphoid tissues II, integument I, integument II, eye, ear, female genital I, female genital II, female genital III, male genital I, male genital II.

ANAT 608   BIOLOGICAL MORPHOMETRY (STEREOLOGY)
Stereological principles. Sampling of tissue. Point counting methods: basic principles, coherent test systems.

ANAT 609   EMBRYOLOGY
Introduction to embryology, fertilization, implantation, gastrulation, neurulation and organogenesis, body cavities and membranes, establishment of the heart, development of the heart, septation of the heart, development of arterial system, development anomalies of the cvs, development of nervous system, development of respiratory system, development of buccal cavity, pharyngeal apparatus I, pharyngeal apparatus II, post-pharyngeal gut I, post-pharyngeal gut II and III development of urinary system, development of male genital system, development of female genital system, development of the eye and ear I, development of the eye and ear II.

ANAT 610   SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be
expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

ANAT 612   ANATOMICAL TECHNIQUES II
Labelling tracer techniques - Histochemistry, cytochemistry, vital staining.

ANAT 614   ANATOMICAL TECHNIQUES III
Culture techniques - Cell and tissue culture, whole embryo culture, morphological assessment, protein content determination. Chick embryo culture (New culture technique).

ANAT 620   SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

BIOC 601   MOLECULAR ASPECTS OF CELL BIOLOGY

BIOC 603   GENETIC INFORMATION: STORAGE, TRANSMISSION AND EXPRESSION

GSPH 601   BIOSTATISTICS AND RESEARCH METHODS
DEPARTMENT OF HAEMATOLOGY

M.PHIL PROGRAMME

DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS
Post BSc: A candidate who already has an MSc in a subject in Laboratory Medicine.

Post MBChB: A candidate who possesses MBChB of the University of Ghana Medical School or other medical degree from a recognized university.

All candidates may be required to satisfy other courses in the Biomedical Science programme in the selection process.

COURSE STRUCTURE
- Course work: 32-36 credits
- Two advanced research seminars on appropriate topics: 6 credits
- Research/Thesis: 30 credits
Written and oral examination at end of programme.

**YEAR ONE**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAEM 601 Cellular Haemopathology</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 602 Blood Transfusion and Coagulation</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 603 Practicals on Basic haematological Investigations</td>
<td>2</td>
</tr>
<tr>
<td>HAEM 604 Practicals on Basic Coagulation and blood Transfusion Methods</td>
<td>3</td>
</tr>
<tr>
<td>HAEM 606 Advanced Blood Transfusion</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 608 Advanced Haemostasis</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 630 Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>CPAT 601 Instrumentation; Water &amp; Electrolytes; Acid/Base; Renal Function</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 603 Practicals related to CPAT 601</td>
<td>3</td>
</tr>
<tr>
<td>CPAT 606 Endocrinology; Carbohydrate; Calcium and Phosphate Metabolism</td>
<td></td>
</tr>
<tr>
<td>CPAT 608 Practicals related to CPAT 606</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 609 Protein; Enzymology; Liver Function</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 611 Practicals related to CPAT 609</td>
<td>2</td>
</tr>
<tr>
<td>MICB 601 Introduction to Microbiology and General microbiology</td>
<td>1</td>
</tr>
<tr>
<td>PATH 601 Characteristics and cellular basis of disease. Inflammation, Healing &amp; Repair</td>
<td>1</td>
</tr>
<tr>
<td>PATH 607 Immunology and Immunopathology</td>
<td>1</td>
</tr>
<tr>
<td>PATH 610 Pathology of the Lymphoreticular system</td>
<td>1</td>
</tr>
<tr>
<td>GSPH 601 Biostatistics and Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>BIOC 602 Molecular Aspects of cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 604 Genetic Information, storage, transmission and expression</td>
<td>3</td>
</tr>
</tbody>
</table>

**Prescribed Electives**

| CPAT 605 CSF; Inborn Errors of Metabolism; Nutritional deficiency             | 1       |
| CPAT 607 Practicals related to CPAT 605                                       | 2       |
| PATH 609 Disorders of growth and neoplasia                                    | 1       |
| PATH 613 General Pathology practicals                                         | 2       |
| PHAM 601 Pharmacokinetics                                                     | 2       |
| PHAM 603 Immunopharmacology and drug allergy                                  | 1       |
| PHAM 605 Pharmacogenetics                                                     | 1       |
| PHAM 607 Pharmacoepidemiology                                                 | 1       |
| PHAM 609 Drug development and evaluation                                     | 1       |
| PHAM 611 Practical I                                                         | 2       |

**YEAR II**

| HAEM 60 Thesis                                                               | 30      |
| HAEM 640 Seminar II                                                         | 3       |
COURSE DESCRIPTIONS

HAEM 601  CELLULAR HAEMOPATHOLOGY

HAEM 602  BLOOD TRANSFUSION AND COAGULATION
The diagnosis and treatment of inherited and acquired bleeding disorders and hypercoagulable states. The genetics, biochemistry and application of the blood groups and the HLA system. Antigen-antibody reactions and factors controlling the reactions. Clinical blood transfusion and immune haemolytic anaemias.

HAEM 603  BASIC HAEMATOLOGICAL INVESTIGATIONS
(PRACTICALS)
Haematological stains and staining techniques including supravital staining and cytochemical staining. Cell counting, manual and automated. Examination of thin and thick blood films and bone marrow films. Methods used in investigating haemolytic anaemias including sickling and solubility tests, Hb electrophoresis HbF and A2 estimation, G6PD screen and electrophoresis, osmotic fragility tests, autohaemolysis tests, spectroscopy, Platelet function test.

HAEM 604  BASIC COAGULATION AND BLOOD TRANSFUSION
METHODS (PRACTICALS)

HAEM 606  ADVANCED BLOOD TRANSFUSION

HAEM 608  ADVANCED HAEMOSTASIS
Arachidonate metabolism in blood cells and vessel walls. The vessel wall and its interactions with platelets, coagulation factors and the fibrinolytic system. Disorders of platelets, coagulation factors and fibrinolysis. Laboratory support in diagnosis of coagulation disorders. Genetic
engineering and coagulation factors.

HAEM 630   SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

HAEM 640   SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

BIOC 602   MOLECULAR ASPECTS OF CELL BIOLOGY


SPECIFIC OBJECTIVES
At the end of the course, the graduate should be able to
i. Perform haematological tests, identify and correct errors in these tests
ii. Prepare and standardise blood products
iii. Prepare and store quality control samples
iv. Initiate research in at least two of the following areas; coagulopathy, haemoglobinopathy and other haemolytic anaemias, haematological malignancies, blood groups and tissue typing.

DEPARTMENT OF MEDICAL BIOCHEMISTRY

M.PHIL. PROGRAMME
DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS
A good first degree in Biochemistry, Biological Sciences or Medical Sciences or a basic registrable medical degree (MB Ch.B or equivalent) with at least a credit in Medical Biochemistry.

COURSE STRUCTURE
A candidate is required to take a minimum of 60 credits. The requirements are as follows:

- Course Work 24-36 credits
- Seminars (2) 6 credits
- Research/Thesis 30 credits
  **60-72 credits**

YEAR I

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 601 Molecular Aspects of Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 603 Genetic Information: Storage, Transmission and Expression</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 604 Biochemical Techniques</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 608 Molecular Biology Practical</td>
<td>2</td>
</tr>
<tr>
<td>BIOC 610 Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>BCHM 602 Molecular Cloning and Expression (Offered in the Department of Biochemistry, Legon)</td>
<td>3</td>
</tr>
<tr>
<td>BCHM 617 Recent Advances in Enzymology (Offered in the Department of Biochemistry, Legon)</td>
<td>3</td>
</tr>
<tr>
<td>GSPH 601 Biostatistics and Research Methods (offered in the School of Public Health)</td>
<td>2</td>
</tr>
</tbody>
</table>

YEAR II

<table>
<thead>
<tr>
<th>Electives</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 600 Thesis</td>
<td>30</td>
</tr>
<tr>
<td>BIOC 620 Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
A minimum of seven (7) credits to be selected from the underlisted list and from other areas in consultation with the Advisory Committee and Head of Department:

- MICB 601 Introduction to Microbiology and General Microbiology (Offered in the Department of Microbiology) 1
- MICB 604 Virology (offered in the Dept. of Microbiology) 2
- PHAM 605 Pharmacogenetics (Offered in the Dept. of Pharmacology) 1
- PHAM 607 Pharmacoepidemiology (Offered in the Dept. of Pharmacology) 1
- PHAM 609 Drug Development and Evaluation (offered in the Dept of Pharmacology) 1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM 621</td>
<td>Molecular Biomarkers and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(offered in the Dept. of Biochemistry, Legon)</td>
<td></td>
</tr>
<tr>
<td>PHYG 601</td>
<td>General, Cellular Gastrointestinal Physiology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(offered in the Dept. of Physiology)</td>
<td></td>
</tr>
<tr>
<td>PATH 601</td>
<td>Characteristics And Cellular Basis of Disease.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inflammation, Healing and Repair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Offered In The Dept. of Pathology)</td>
<td></td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**

**BIOC 601 MOLECULAR ASPECTS OF CELL BIOLOGY**

**BIOC 603 GENETIC INFORMATION: STORAGE, TRANSMISSION AND EXPRESSION**

**BIOC 604 BIOCHEMICAL TECHNIQUES**
Qualitative and quantitative measurements and instrumentation, sample pre-treatment techniques, and instrumentation: resolution, sensitivity, detection limit. Detailed consideration and application of some selected methods e.g. chromatography, electrophoresis, radioimmuno-assay, spectrophotometry etc.

**BIOC 608 MOLECULAR BIOLOGY PRACTICALS**
A practical laboratory session to expose the students to modern techniques and methods of isolation, purification, analysis and manipulation of genetic materials of different organisms.

**BCHM 602 GENE CLONING AND EXPRESSION**
BIOC 610  SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

BIOC 620  SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

BCHM 617  ADVANCED ENZYMEOLOGY
Steady state and pre-study state: steady state enzyme kinetics; methods for identifying kinetic mechanisms; isotope exchange rates; multiple substrate kinetics; kinetic techniques in enzymology; stop flow methods, relaxation (temperature jump) methods; intra- and extra cellular enzymes. Fast reactions: Application and importance to biochemistry; reactions between proteins and small molecules. Protein – ligand binding measurement; analysis of binding isotherms; cooperativity; Hill and Scatchard plots; kinetics of allostatic enzymes. Industrial use of enzymes: practical and economic advances; enzyme stabilization and immunobilization; their effects on kinetics; enzyme reactions; type of bioreactors.

BCHM 621  MOLECULAR BIOMARKERS OF POLLUTION

GSPH 601  BIOSTATISTICS AND RESEARCH METHODS
Biostatistics

Research Methods: Research design; problem-formulation, selection of methodology. Quantitative studies, Survey instruments; Qualitative Studies, focus group discussion, Participant observation, Exit interviews. Sampling techniques. Data collection: tools and sources, censuses, special surveys, focus group discussion, literature study, special registers study, vital statistics, Coroner’s registers study, Opinion poll, Health institutional data study. Data reporting and presentation. Team work e.g. Consultation with statisticians. Proposal writing.

MICB 601  INTRODUCTION TO AND GENERAL MICROBIOLOGY
Classification schemes as applied to microorganisms phylogenetic and numerical, structural and biochemical characteristics for the purpose of identifying microorganisms - Bacteria, Parasites, Viruses. Structure and ultrastructure of micro-organisms, nutrition and growth kinetics. Basic
physiology. Sterilisation and Disinfection.

MICB 604 VIROLOGY

PATH 601 CHARACTERISTICS AND CELLULAR BASIS OF DISEASE.
INFLAMMATION, HEALING AND REPAIR
History of pathology; Techniques available in pathology. Aetiology; Pathogenesis; Manifestation and Presentation; Complications and Sequelae; Prognosis. Causes of disease - Genetics; Infective (Bacteria Viruses, Yeasts and Fungi; Parasites); Chemical Agents; Physical Agents. Nomenclature- Primary and Secondary; Acute and Chronic; Benign and Malignant; Prefixes and Suffixes; Syndromes. Classification - Congenital (Inherited and not Inherited); Acquired; Iatrogenic

Cellular Basis of Disease
Cell Proliferation ; Homeostasis. Cellular injury - Mechanisms of cellular injury; Cell Injury (Sublethal and lethal); Effects of Physical, Chemical and Biological agents.- Cellular response to injury - Hydropic change, Fatty change; Necrosis , Coagulative, Colliquative/Liquefactive; Caseous; Gangrene; Light and Electron microscopic changes in Apoptosis.

Inflammation, Healing and Repair
The Acute Inflammatory Process - Mechanism, Humoral Mediators. Histamine and serotonin, Platelet Activating Factor, Arachidonic Acid Derivatives, Coagulation and Fibrinolytic systems, Kinin System, Complement, Cytokines, Neutrophil- derived lysosomal compounds (proteases, cationic proteins, free radicals); Morphological Features including abscess, types of exudate, pseudomembranous inflammation; Effects-beneficial and Harmful, Local and Systemic- Local Sequelae - Suppuration; Resolution, Regeneration, Organisation and Repair (Healing by Fibrosis); Progression to Chronic Inflammation- Chronic inflammation - Progression from acute, Recurrent acute and Primary chronic inflammation; Cells involved in chronic inflammation (including specialised forms of macrophages); Granulomatous inflammations; - Healing - Wound Healing - First Intention/Primary Union, Second Intention/Secondary Union; Fracture Healing; Healing of mucosae; granulation Tissue; Molecular control of healing - Growth Factors and their interaction; Factors affecting Healing)

PHAM 605 PHARMACOGENETICS
Drug toxicity due to impaired drug metabolism, increased sensitivity to drug, novel drug effect, decreased responsiveness to drug, abnormal distribution of drug.

PHAM 607 PHARMACOEPIDEMIOLOGY
Drug legislation, national drug policy and regulation; pharmaceutical policy, legislation and regulation; drug information; drug procurement and distribution; economic policies and incentives on drug use; rational drug use: social and cultural attitudes, beliefs, surroundings, information,
promoting generic drug use, personal characteristics, primary care providers, prescribing monitoring, essential drugs programme, and pharmacosurveillance.

PHAM 609  DRUG DEVELOPMENT AND EVALUATION
Qualitative and quantitative estimation of drug action, methods of developing new drugs, clinical trial, use and misuse of drugs, monitoring of drug use, drug interaction.

PHYG 601  GENERAL CELLULAR AND GASTRO INTESTINAL PHYSIOLOGY
In-depth study of general and gastro-intestinal physiology. Application of the laws of thermodynamics to the cell; to mass and energy transport mechanisms in physiological homeostasis and regulation. The cell and its membranes, cellular transduction processes, intercellular communication, membrane transport mechanisms, excitation and nerve conduction and innervation of muscle and neuromuscular transmission.

Application of the fundamental principles to the whole organism’s acquisition of nutrients and micronutrients, the role of enzymes and hormones and their environment in gastrointestinal physiology.

DEPARTMENT OF MICROBIOLOGY

M.PHIL PROGRAMME

DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS

Post B.Sc
The programme shall be open to candidates who possess a good first degree (at least a second class lower division) in any Biological Science or Microbiology.

Post MBChB/BSc Medical Science
Candidates who possess MBChB/BSc Medical Science of the University of Ghana Medical School or other Medical Degree from a recognized university.

Post MSc
A candidate who already has an MSc in a subject in Laboratory Medicine

COURSE STRUCTURE
- Course work 24-36 Credits
- Seminar presentation I 3 Credits
- Seminar presentation II 3 Credits
- Research/Dissertation or Thesis 30 Credits

YEAR I
Core Courses

MICB 601  Introduction to General Microbiology  1
MICB 602  Chlamydia  1
MICB 603  Practicals(for MICB 601) Basic Microbiology  1
MICB 604  Virology  2
MICB 605  Mycology  1
MICB 606  Electron microscopy and tissue culture  1
MICB 607  Mycology Practicals  1
MICB 608  Inoculation of clinical material  1
MICB 609  Bacteriology  4
MICB 610  Parasitology and Entomology  3
MICB 611  Investigation of diseases; special Techniques  1
MICB 612  Investigation of Parasitic Disease  1
MICB 613  Antimicrobials - Practicals  1
MICB 614  Cultural Techniques in Parasitology  1
MICB 616  Practicals on General Parasitology  1
MICB 618  Tutorials in special topics in Parasitology  2
MICB 630  Seminar I  3
GSPH 601  Biostatistics and Research Methods  2
BIOC 602  Molecular Aspects of cell Biology  3
BIOC 604  Genetic Information, storage, transmission and expression  3
PHAM 606  Drug resistance  1

Prescribed Electives

Students are to take a minimum of 4 credits from these electives

PATH 601  Characteristics and cellular basis of disease.  1
  Inflammation, healing and repair
PATH 607  Immunology and Immunopathology  1
PATH 613  General Pathology practicals  2
CPAT 601  Instrumentation; Water & Electrolytes; Acid/Base;  1
  Renal Function
CPAT 603  Practicals related to CPAT 601  3
HAEM 601  Cellular Haemopathology  1
HAEM 603  Practicals on Basic haematological Investigations  2

Prescribed Electives

Prescribed elective courses may be selected from 2nd semester courses of other departments as may be directed by the Biomedical Science Committee.

YEAR TWO

MICB 640  Seminars II  3
MICB 600  Thesis  30

COURSE DESCRIPTIONS
Specific Objectives
At the end of the course, the student should:
   i. Have a sound theoretical knowledge of the structure of microorganisms.
   ii. Know how to collect specimens for the diagnosis of infectious diseases
   iii. Be able to set up tests for investigation of infection and interpret the results.
   iv. Be equipped to initiate research in at least one major area in Microbiology, e.g.,
       Virology, Bacteriology or Parasitology

MICB 601  INTRODUCTION TO GENERAL MICROBIOLOGY
Classification schemes as applied to microorganisms, phylogenetic and numerical, structural and biochemical characteristics for the purpose of identifying microorganisms - Bacteria, Parasites, Viruses. Structure and ultrastructure of micro-organisms, nutrition and growth kinetics. Basic physiology. Sterilisation and Disinfection.

MICB 602  CHLAMYDIA

MICB 603  PRACTICAL IN BASIC MICROBIOLOGY

MICB 604  VIROLOGY

MICB 605  MYCOLOGY

MICB 606  PRACTICAL – VIROLOGY ELECTRON MICROSCOPY
Principles of purification and concentration of viruses, cataloguing and indexing, electron microscopy, Negative staining, ultra-thin section techniques. Important disease causing viruses, public health aspects of virology. Persistence of viruses in milk water air and sewage. Use of disinfectants in virology. Care of apparatus and equipment.

MICB 607  PRACTICAL IN MYCOLOGY
Staining of fungi, investigation of fungal infections-superficial, subcutaneous, systemic and opportunistic. Identification of yeast, dermatophytes, environmental fungi.

MICB 608  PRACTICAL IN ANIMAL TECHNIQUES AND
INNOCULATION OF CLINICAL MATERIAL

MICB 609 BACTERIOLOGY

MICB 610 PARASITOLOGY AND ENTOMOLOGY

MICB 611 PRACTICALS IN INVESTIGATION OF BACTERIOLOGICAL DISEASE
Investigation of acute and chronic bacterial infections - endocarditis, sexually transmitted diseases, meningitis, septicaemia, pneumonia, UTI, diarrhoea, osteomyelitis, tuberculosis. Serological tests including agglutination, CIE, and ELISA.

MICB 612 INVESTIGATION OF PARASITIC DISEASES

MICB 613 PRACTICALS IN ANTIMICROBIALS

MICB 614 CULTURAL TECHNIQUES IN PARASITOLOGY

MICB 616 PRACTICALS ON GENERAL PARASITOLOGY
Morphology, life cycle, and classification of human parasites. Diagnosis of parasitic infections of humans; e.g., nematodes, trematodes, cestodes, and protozoa.

MICB 630 SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.
MICB 640    SEMINAR II
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits

BIOC 602    MOLECULAR ASPECTS OF CELL BIOLOGY
Approved course in the Department of Medical Biochemistry UGMS.

BIOC 604    GENETIC INFORMATION: STORAGE, TRANSMISSION AND EXPRESSION
Approved course in the Department of Biochemistry UGMS.

GSPH 601    BIOSTATISTICS AND RESEARCH METHODS
Approved course in the School Public Health.

For the following elective courses refer to the and department for a detailed syllabus:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH 601</td>
<td>Characteristics and cellular basis of disease. Inflammation, healing and repair</td>
<td>1</td>
</tr>
<tr>
<td>PATH 607</td>
<td>Immunology and Immunopathology</td>
<td>1</td>
</tr>
<tr>
<td>PATH 613</td>
<td>General Pathology practicals</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 601</td>
<td>Instrumentation; Water &amp; Electrolytes; Acid/Base; Renal Function</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 603</td>
<td>Practicals related to CPAT 601</td>
<td>3</td>
</tr>
<tr>
<td>HAEM 601</td>
<td>Cellular Haemopathology</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 603</td>
<td>Practicals on Basic haematological Investigations</td>
<td>2</td>
</tr>
</tbody>
</table>

DEPARTMENT OF PHARMACOLOGY
M.PHIL PROGRAMME

DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS
i. The programme shall be open to candidates who possess Bachelor of Science degree with a minimum of 2nd Class degree in any science subject (Biomedical, Biological, Physics with biology) from a recognized university.

ii. All candidates shall be required to satisfy departmental requirements in a selection process.

To obtain M.Phil degree in Pharmacology:

A. A candidate shall be required to undertake
i. Two-semester taught courses in Level 600 Pharmacology and other Biomedical Science courses
ii. Research project of a minimum of nine calendar months and satisfy a minimum of two research seminars.

B. A candidate without Pharmacology background shall, in addition to the above, be required to undertake remedial Level 300 courses in Anatomy, Biochemistry and Physiology, and Level 400 courses in Pharmacology.

Where appropriate, a candidate may be granted exemption in the subject in which the first degree was obtained.

C. All candidates shall satisfy all other existing requirements as stipulated in the University Graduate Regulations.

COURSE STRUCTURE
24 credits minimum and 36 credits maximum for year 1 (12 credits minimum/semester and 18 credits maximum /semester).

• Course work: 24 – 36 credits
  All required Level 600 courses in Pharmacology for two semesters in addition to other core subjects prescribed by the Department.
  Free electives
  Prescribed electives
• Two research seminars 6 credits
  Research/Thesis 30 credits

YEAR I

Core Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAM 601</td>
<td>Pharmacokinetics</td>
<td>3</td>
</tr>
<tr>
<td>PHAM 602</td>
<td>Drug Tolerance and Dependance</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 603</td>
<td>Immunopharmacology and drug allergy</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 604</td>
<td>Chemical carcinogenesis and Teratogenesis</td>
<td>2</td>
</tr>
<tr>
<td>PHAM 605</td>
<td>Pharmacogenetics</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 606</td>
<td>Drug resistance</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 608</td>
<td>Practical I</td>
<td>2</td>
</tr>
<tr>
<td>PHAM 609</td>
<td>Drug development and Evaluation</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 610/626</td>
<td>Courses for specialization</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 630</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>PHAM 611</td>
<td>Practical II</td>
<td>2</td>
</tr>
<tr>
<td>GSPH 601</td>
<td>Biostatistics and Research Methods</td>
<td>2</td>
</tr>
</tbody>
</table>

**YEAR II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAM 600</td>
<td>Research Project/Thesis</td>
<td>30</td>
</tr>
<tr>
<td>PHAM 640</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

**Prescribed Electives**

- PHAM 607 Pharmacoepidemiology                                  | 1       |
- BIOC 601 Molecular aspects of cell biology                     | 3       |
- BIOC 603 Genetic information, storage, transmission and expression | 3       |
- PATH 601 Characteristics and cellular basis of disease. Inflammation, Healing and repair | 1       |
- PATH 605 Genetic and Metabolic disorders                       | 1       |
- PATH 607 Immunology and Immunopathology                        | 1       |
- PATH 609 Disorders of growth and neoplasia                     | 1       |
- MICB 613 Antimicrobials - Practicals                            | 1       |
- MICB 606 Electron microscopy and Tissue Culture               | 1       |
- MICB 614 Culture techniques in Parasitology                    | 1       |

**Free Electives**

- CPAT 601 Instrumentation; water and electrolytes; Acid/Base; Renal Function | 1       |
- CPAT 605 CSF; Inborn Errors of Metabolism; nutritional deficiencies | 1       |
- CPAT 609 Protein; Enzymology, Liver function                   | 1       |
- HAEM 601 Cellular Haemopathology                               | 1       |
- HAEM 608 Advanced haemostasis                                  | 1       |
- PATH 602 Pathology of the cardiovascular system                | 1       |
- PATH 604 Pathology of the respiratory system                   | 1       |
- PATH 606 Pathology of the GIT system; Liver, Biliary Tract, and Pancreas | 1       |
- MICB 604 Virology                                             | 2       |

**COURSE DESCRIPTIONS**
PHAM 601  PHARMACOKINETICS

PHAM 602  DRUG TOLERANCE AND DEPENDENCE
Metabolic tolerance, homeostatic adjustment antagonising drug action, tachyphylaxis, tolerance and physical dependence in the central nervous system.

PHAM 603  IMMUNOPHARMACOLOGY AND DRUG ALLERGY
Immune mechanism, test of immunocompetence, relationship between immunosuppressive therapy and cancer chemotherapy, immunosuppressive agents, immunomodulating agents, immunological basis of drug allergy, immediate drug allergy autoimmune reactions to drugs, serum sickness and vasculitic reactions, clinical identification of immunologic reactions to drugs.

PHAM 604  CHEMICAL CARCINOGENESIS, TERATOGENESIS
Mechanism of action of chemical carcinogens, principal groups of chemical carcinogens modifying factors, biotransformation, carcinogenic hazards in the human environment; experimental teratogenesis, teratogenesis in man.

PHAM 605  PHARMACOGENETICS
Drug toxicity due to impaired drug metabolism, increased sensitivity to drug, novel drug effect, decreased responsiveness to drug, abnormal distribution of drug.

PHAM 606  DRUG RESISTANCE

PHAM 607  PHARMACOEPIDEMIOLOGY
Drug legislation, national drug policy and regulation; pharmaceutical policy, legislation and regulation; drug information; drug procurement and distribution; economic policies and incentives on drug use; rational drug use: social and cultural attitudes, beliefs, surroundings, information, promoting generic drug use, personal characteristics, primary care providers, prescribing monitoring, essential drugs program, and pharmacosurveillance.

PHAM 608  PRACTICAL I
Animal and human experiments, fluorescence polarisation immunoassay; radioimmunoassay; functioning of a pharmacology analytical laboratory; ELISA. A double blind control study with statistical analysis.

PHAM 609  DRUG DEVELOPMENT AND EVALUATION
Qualitative and quantitative estimation for drug action, methods of developing new drugs, clinical
trial, use and misuse of drugs, monitoring of the drug use, drug - drug interaction.

**PHAM 611 PRACTICAL II**
Isolated tissues and organs experiments, gel electrophorsis and Western Blotting Receptor, isolation, subcellular fractionation, tissue culture and sterile techniques, use of fluorescence and light microscopes.

**PHAM 610-626 COURSES FOR SPECIALIZATION**
Student-led seminars on current topics in specialised areas. The courses are intended to hone students’ communication skills, ability to seek information and do literature search; and also form the basis of specialisation in a chosen field. Students shall, in consultation with the supervisor, select only one of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAM 610</td>
<td>Advances in Respiratory Pharmacology and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 612</td>
<td>Advances in Cardiovasculo-Renal Pharmacology and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 614</td>
<td>Advances in Gastrointestinal Pharmacology and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 616</td>
<td>Advances in Neuropharmacology and Neuropsychology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 618</td>
<td>Advances in drug modification of inflammatory process</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 620</td>
<td>Advances in Immunopharmacology and Drug Allergy</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 622</td>
<td>Advances in Molecular Pharmacology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 624</td>
<td>Advances in Toxicology</td>
<td>4</td>
</tr>
<tr>
<td>PHAM 626</td>
<td>Ethnopharmacology</td>
<td>4</td>
</tr>
</tbody>
</table>

Phytochemistry, extraction and purification, galenicals, computer data-base, isolation of active principle; pharmacokinetic, pharmacodynamic and toxicologic study; clinical trial.

**PHAM 630 SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**PHAM 640 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**BIOC 601 MOLECULAR ASPECTS OF CELL BIOLOGY**
signal, transduction in sensory systems.

**BIOC 603 GENETIC INFORMATION: STORAGE, TRANSMISSION AND EXPRESSION**

---

**DEPARTMENT OF PHYSIOLOGY**

**M.PHIL PROGRAMME**

**DURATION OF STUDY**
4 Semesters (24 months)

**ENTRY REQUIREMENTS**
Candidates may be required to take specific remedial courses in the B.Sc. (Med. Sc.) programme if they have not done human physiology and biochemistry equivalent to level 300 of the B.Sc. (Med. Sc.) degree programme. Such courses will be taken as part of the first year core courses spread over the first and second semesters. A CGPA of 3.5 or above in these core courses is required before progression to the 2nd year of the M.Phil programme, where credits for an elective course, 2 seminars and a thesis are offered.

**COURSE STRUCTURE**
A candidate is required to take a minimum of 62 and maximum of 72 credits in four (4) semesters as follows:

- Course work: 26 - 36 credits
- Seminar I: 3 credits
- Seminar II: 3 credits
- Thesis: 30 credits
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYG 601</td>
<td>General, Cellular, Gastrointestinal</td>
<td>4</td>
</tr>
<tr>
<td>PHYG 602</td>
<td>Cardiovascular, Renal and Respiratory Physiology</td>
<td>4</td>
</tr>
<tr>
<td>PHYG 604</td>
<td>Endocrinology, Metabolism and Reproduction</td>
<td>4</td>
</tr>
<tr>
<td>PHYG 606</td>
<td>Neurophysiology</td>
<td>4</td>
</tr>
<tr>
<td>PHYG 610</td>
<td>Seminar I</td>
<td>3</td>
</tr>
<tr>
<td>GSPH 601</td>
<td>Biostatistics and Research Methods</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Offered in the School of Public Health)</td>
<td></td>
</tr>
<tr>
<td>BIOC 601</td>
<td>Molecular Aspects of Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Offered in the Department of Med. Biochemistry, UGMS)</td>
<td></td>
</tr>
<tr>
<td>BIOC 603</td>
<td>Genetic Information Storage, Transmission and Expression</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Offered in the Department of Med. Biochemistry, UGMS)</td>
<td></td>
</tr>
<tr>
<td>PHYG 620</td>
<td>Seminar II</td>
<td>3</td>
</tr>
<tr>
<td>PHYG 600</td>
<td>Thesis/Research</td>
<td>30</td>
</tr>
</tbody>
</table>

**PROGRAMME**

**Core Courses**

**YEAR II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYG 620</td>
<td>Seminar II</td>
<td>3</td>
</tr>
<tr>
<td>PHYG 600</td>
<td>Thesis/Research</td>
<td>30</td>
</tr>
</tbody>
</table>

**AREAS FOR SPECIALIZATION (One to be offered by candidates)**

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Renal Physiology</td>
</tr>
<tr>
<td>B.</td>
<td>Cardiovascular Physiology</td>
</tr>
<tr>
<td>C.</td>
<td>Respiratory Physiology</td>
</tr>
<tr>
<td>D.</td>
<td>Endocrine Physiology</td>
</tr>
<tr>
<td>E.</td>
<td>Cellular &amp; Molecular Physiology</td>
</tr>
</tbody>
</table>

Seminars will be based on current advances in these areas.

**COURSE DESCRIPTIONS**

**PHYG 601**  **GENERAL CELLULAR AND GASTROINTESTINAL PHYSIOLOGY**

In-depth study of general and gastro-intestinal physiology. Application of the laws of thermodynamics to the cell; to mass and energy transport mechanisms in physiological homeostasis and regulation. The cell and its membranes, cellular transduction processes, intercellular communications, membrane transport mechanisms, excitation and nerve conduction and innervation of muscle and neuromuscular transmission. Application of the fundamental principles to the whole organism’s acquisition of nutrients and micronutrients, the role of enzymes and hormones and their environment in gastrointestinal physiology.

**PHYG 602**  **CARDIOVASCULAR, RENAL AND RESPIRATORY PHYSIOLOGY**

The function of the cardiovascular, renal and respiratory systems as an integrative and interrelated multi-system unit is emphasized. Candidates will be well versed in haemorheology, cardiac
function and control, fundamental concepts in peripheral circulation and its regulation, haemodynamics in regional circulatory beds and an integration of the control of the circulation. Renal function and formation of urine, principles of renal transport, and action of hormones on the kidneys. Pulmonary ventilation, gas exchange and gas transport.

**PHYG 604**  **ENDOCRINOLOGY, METABOLISM AND REPRODUCTION**
The endocrine system as a communication system, characteristics of hormones and the mechanisms of action. Feedback control mechanisms. The role of the endocrine system in the homeostatic control of body fluid volume and composition, metabolism and energy balance, reproduction, stress adaptation and growth. An integrated view is stressed.

**PHYG 606**  **NEUROPHYSIOLOGY**

**PHYG 610**  **SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**PHYG 613**  **ADVANCES IN RENAL PHYSIOLOGY**
In-depth studies of selected topics in current advances in renal physiology.

**PHYG 615**  **ADVANCES IN CARDIOVASCULAR PHYSIOLOGY**
In-depth studies of selected topics in current advances in CV physiology.

**PHYG 617**  **ADVANCES IN RESPIRATORY PHYSIOLOGY**
In-depth studies of selected topics in current advances in respiratory physiology.

**PHYG 620**  **SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**PHYG 619**  **ADVANCES IN ENDOCRINE PHYSIOLOGY**
In-depth studies of selected topics in current advances in endocrine physiology.

**PHYG 621**  **ADVANCES IN CELLULAR & MOLECULAR PHYSIOLOGY**
In-depth studies of selected topics in current advances in cellular and molecular physiology.

**BIOC 601**  **MOLECULAR ASPECTS OF CELL BIOLOGY**

**BIOC 604 GENETIC INFORMATION: STORAGE, TRANSMISSION AND EXPRESSION**


**GSPH 601 BIOSTATISTICS AND RESEARCH METHODS**


**DEPARTMENT OF CHEMICAL PATHOLOGY**

**M.PHILCHEMICAL PATHOLOGY**
DURATION
4 Semesters (24 months)

ENTRY REQUIREMENTS

Post BSc
The programme shall be open to candidates who possess a good first degree (at least a second class lower division) in any Biological Science, Chemical Pathology, Biochemistry, Physiology, Pharmacology, Toxicology, Chemistry or Microbiology.

POST MBCHB/BSC MEDICAL SCIENCE
Candidates who possess MB.ChB/BSc (Medical Science) of the University of Ghana Medical School or other Medical Degree from a recognized university.

Post MSc
A candidate who already has an MSc in a subject in Laboratory Medicine – namely, Pathology, Chemical Pathology, Haematology and Microbiology.

All Candidates may be required to satisfy the Biomedical Science departments in a selection process.

DEGREE REQUIREMENTS FOR MPhil
To obtain an MPhil degree in Chemical Pathology, a candidate is required to possess any of the following:

POST BSc

a. Attend two semesters of some Level 600 Chemical Pathology Courses. In addition they will be required to undertake a research project for at least 2 semesters and satisfy a minimum of 2 research seminars.

b. There will be a written examination at the end of the first year for post BSc and an oral examination on completion of the project at the end of the 2nd year.

POST MBCHB/BSC MEDICAL SCIENCE
A candidate who possesses MBChB/BSc Medical Science of the University of Ghana Medical School or other Medical Degree recognized by the University of Ghana is required to satisfy a minimum of 4 semesters extended programme, an approved research, project (including extra practical exercises) and a minimum of 2 research seminars. In addition, the candidate shall be expected to sit in some level 400 lectures

Post MSc
A candidate who already has an MSc in a subject in Laboratory Medicine may be required to satisfy a minimum of at least 2 semesters on an approved research project and a minimum of 2 research seminars.

There will be an oral examination at the end of the programme.
There will be a written examination at the end of the first year of the programme. All candidates will have to satisfy all other existing requirements as stipulated in the University-Postgraduate regulations.

**COURSE STRUCTURE**

- Course work 24 – 36 credits
- Two advanced research seminars on appropriate topics 6 credits
- Research/Thesis. 30 credits

**YEAR I**

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPAT 601</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 602</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 603</td>
<td>3</td>
</tr>
<tr>
<td>CPAT 604</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 605</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 606</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 607</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 608</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 609</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 610</td>
<td>1</td>
</tr>
<tr>
<td>CPAT 611</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 612</td>
<td>2</td>
</tr>
<tr>
<td>CPAT 630</td>
<td>3</td>
</tr>
<tr>
<td>GSPH 601</td>
<td>2</td>
</tr>
<tr>
<td>BIOC 602</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 603</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 604</td>
<td>3</td>
</tr>
</tbody>
</table>

**Prescribed Electives**

*Students are to take a minimum of 4 credits from these electives*

<table>
<thead>
<tr>
<th>Electives</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAEM 601</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 603</td>
<td>2</td>
</tr>
<tr>
<td>PATH 601</td>
<td>1</td>
</tr>
<tr>
<td>PATH 607</td>
<td>1</td>
</tr>
<tr>
<td>PATH 613</td>
<td>2</td>
</tr>
<tr>
<td>MICB 601</td>
<td>1</td>
</tr>
<tr>
<td>MICB 603</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 601</td>
<td>2</td>
</tr>
</tbody>
</table>
Prescribed elective courses may be selected from 2nd semester courses of other departments as may be directed by the Biomedical Science Committee. Students are to take a minimum of 3 credits from these electives.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAEM 602</td>
<td>Blood Transfusion and Coagulation</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 604</td>
<td>Practicals on Basic Coagulation and blood Transfusion</td>
<td>3</td>
</tr>
<tr>
<td>HAEM 606</td>
<td>Advanced Blood Transfusion</td>
<td>1</td>
</tr>
<tr>
<td>HAEM 608</td>
<td>Advanced Haemostasis</td>
<td>1</td>
</tr>
<tr>
<td>MICB 602</td>
<td>Chlamydia</td>
<td>1</td>
</tr>
<tr>
<td>MICB 604</td>
<td>Virology</td>
<td>2</td>
</tr>
<tr>
<td>MICB 606</td>
<td>Electron microscopy and tissue culture</td>
<td>1</td>
</tr>
<tr>
<td>MICB 608</td>
<td>Inoculation of clinical material</td>
<td>1</td>
</tr>
<tr>
<td>MICB 610</td>
<td>Parasitology and Entomology</td>
<td>3</td>
</tr>
<tr>
<td>MICB 612</td>
<td>Investigation of Parasitic Disease</td>
<td>1</td>
</tr>
<tr>
<td>MICB 614</td>
<td>Cultural Techniques in Parasitology</td>
<td>1</td>
</tr>
<tr>
<td>MICB 616</td>
<td>Practicals on General Parasitology</td>
<td>1</td>
</tr>
<tr>
<td>MICB 618</td>
<td>Tutorials</td>
<td>2</td>
</tr>
<tr>
<td>PATH 602</td>
<td>Pathology of the Cardiovascular System</td>
<td>1</td>
</tr>
<tr>
<td>PATH 604</td>
<td>Pathology of the Respiratory System</td>
<td>1</td>
</tr>
<tr>
<td>PATH 606</td>
<td>Pathology of the GIT System; Liver, Biliary Tract, and</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td></td>
</tr>
<tr>
<td>PATH 608</td>
<td>Pathology of the Genitourinary System</td>
<td>1</td>
</tr>
<tr>
<td>PATH 610</td>
<td>Pathology of the Lymphoreticular system</td>
<td>1</td>
</tr>
<tr>
<td>PATH 612</td>
<td>Pathology of the Nervous, Musculoskeletal and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Endocrine Systems</td>
<td></td>
</tr>
<tr>
<td>PATH 614</td>
<td>Systemic Pathology Practicals</td>
<td>2</td>
</tr>
<tr>
<td>PHAM 602</td>
<td>Drug Tolerance and Dependence</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 604</td>
<td>Chemical Carcinogenesis and Teratogenesis</td>
<td>2</td>
</tr>
<tr>
<td>PHAM 606</td>
<td>Drug resistance</td>
<td>1</td>
</tr>
<tr>
<td>PHAM 608</td>
<td>Practical II</td>
<td>2</td>
</tr>
</tbody>
</table>

**YEAR II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPAT 640</td>
<td>Seminar II</td>
<td>3</td>
</tr>
<tr>
<td>CPAT 600</td>
<td>Research/Thesis</td>
<td>30</td>
</tr>
</tbody>
</table>
DEPARTMENT OF PATHOLOGY

M.PHIL PROGRAMME

1. DURATION
Two Academic Sessions - (4 semesters).

2. ENTRY REQUIREMENTS

i. Post B.Sc
   The programme shall be open to candidates who possess a Bachelor of Science degree with a minimum of a 2nd Class Upper in any Biological Science, Chemical Pathology, Biochemistry, Physiology, Pharmacology, Toxicology, Chemistry or Microbiology; all described under the heading Biomedical Science.

ii. Post MBChB
   A candidates who possess MB,ChB of the University of Ghana Medical School or other Medical degree recognised by the Council of the University Ghana.

iii. Post Msc
   A candidate who already has an MSc in a subject in Laboratory Medicine.

   All Candidates may be required to satisfy the Biomedical Science departments in a selection process.

3. DEGREE REQUIREMENTS FOR M.PHIL

   To obtain an M.Phil degree in Pathology a candidate is required to satisfy the following:
1. **Post BSc**
   
a. Attend two semesters of Level 600 Medical Science Courses. In addition they will be required to undertake a research project for at least 2 semesters and satisfy a minimum of 2 research seminars.

b. There will be a written examination at the end of the first year. There may also be an oral examination on completion of the research project.

2. **Post MB ChB**

   A candidate who possess MB ChB of the University of Ghana Medical School or other Medical degree recognised by the Council of the University of Ghana requires to satisfy a minimum of 4 semesters of 68 weeks extended programme on an approved research project (including extra practical exercises and a minimum of 2 research seminars. In addition, the candidate shall be expected to sit in all level 600 lectures.

   There will be a written examination at the end of the first year. There may also be an oral examination on completion of the research project.

3. **Post Msc**

   A candidate who already has an MSc. In a subject in Laboratory Science may be required to satisfy a minimum of at least 2 semesters on an approved research project and a minimum of 2 research seminars.

   All candidates will have to satisfy all other existing requirements as stipulated in the University Graduate regulations.

4. **Admission Requirements for Ph.D**

   The programme shall be open to candidates who possess

   1) An M.Phil degree, good MSc degree in Biomedical Science or its equivalent in a subject in laboratory Medicine (Biomedical Science)
   2) All candidates may be required to satisfy departments of Laboratory Medicine in the selection process.

5. **Degree Requirement for PhD**

   To obtain a Ph.D degree in Pathology, a candidate must have undertaken an approved research project for a minimum period of 6 semesters. In addition candidates must satisfy a minimum of 6 research seminars. There will be an oral examination at the end of the programme.

6. **Programme Structure**

   M.Phil Courses
1. Course work and written examination at the end of year 1.
2. Two advanced research seminars on appropriate topics (6 credits)
3. Research work for 2 semesters on approved topic (30 credits)
4. Oral examination at the end of the programme.

**Ph.D Courses**
1. Research work for 6 semesters on approved topic
2. Six advanced research seminars
3. Oral examination at the end of the programme.

**Course Structure – M.Phil**
A candidate is required to take a minimum to 60 credits. The course credit requirements are as follows:

| Course work | 24 – 36 credits |
| Seminar Presentation I | 3 credits |
| Seminar Presentation II | 3 credits |
| Research/Dissertation or Thesis | 12/30 credits |

**PROGRAMME**

**YEAR ONE**

**Core Courses**
- PATH 601  Pathology I  4
- PATH 602  Pathology II  4
- PATH 604  Histological Techniques  3
- PATH 606  Histological Techniques Practical  2
- PATH 630  Seminar I  3
- GSPH 601  Biostatistics and Research Methods  2
- BIOL 601  Molecular Aspects of Cell Biology  3
- BIOL 603  Genetic Information; Storage and Transmission  3
- MICB 601  Introduction to Bacteriology/Mycology/Parasitology  4
- ANAT 610  Genetics and Cytogenetics  2
- ANAT 612  Biological Morphometry  2

**ELECTIVES**  Max 4 credits
As part of their general education, candidates will be required to take electives from other cognate Departments to support their chosen fields.

**YEAR TWO**

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH 640  Seminar 2</td>
<td>3</td>
</tr>
<tr>
<td>PATH 600  Research/Thesis</td>
<td>30</td>
</tr>
</tbody>
</table>

**OBJECTIVES**
The candidate should at the end of the course have a sound theoretical knowledge of the Scientific
principles and mechanisms of disease causation. The candidate should be able to embed, cut and stain sections ready for examination and also have basic practical knowledge in histochemistry, immunocytochemistry and electron microscopy. In addition, candidates should be able to conceive and follow through research.

OUTLINE OF COURSES

PATH 601 Pathology I (5 credits) - Cellular Response to Injury, Cell Injury, Cell Adaptation, Inflammation, Healing and Repair.

PATH 602 Pathology II (5 credits): Genetic diseases and metabolic disorders, Immunology and immunopathology, circulatory disorders, disorders of growth and Neoplasia.

PATH 604 Histological techniques (3 credits): Fixation of Tissue, Processing, embedding, microtomy, staining, histochemistry, cytochemistry, immunostaining, microscopy: light, fluorescent and electron microscopy.

PATH 606 Practical aspects of histological techniques (2 credits).

PATH 610 Thesis (30 credits) A supervised and independent study and research involving the use of Library, Scientific Literature and a Project. The work must contribute to the advancement of scientific knowledge. The submission of a thesis on this project is a requirement for graduation.

PATH 630 Research Seminar

In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

PATH 640 Research Seminar 2

For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

GSPH 601 Introduction to Biostatistics and Research methods (2 credits)

ANAT 610 Human cytogenetics (2 credits) - general principles of cytogenetics.

ANAT 612 Biological morphometry (2 credits)

BIOC 601 Molecular aspects of cell biology (3 credits)

BIOC 603 Genetic information; storage and transmission (3 credits)

MICB 601 Introduction to bacteriology/parasitology/mycology (4 credits)
SCHOOL OF NURSING

M.Sc NURSING

ENTRY REQUIREMENTS
The candidates for admission should have:
- B.A./B.Sc. Nursing with a minimum of second class lower division and
- Practised Nursing for not less than 3 years.

DURATION
The programme will last a period of two semesters. (12 months)

COURSE STRUCTURE

First Semester

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 601</td>
<td>Management Theories and Health Policies</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 603</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>NURS 609</td>
<td>Independent Study 1: Clinical Theory</td>
<td>4</td>
</tr>
</tbody>
</table>

Electives (Students are to select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 605</td>
<td>Foundations of Advanced Nursing Practice</td>
<td>4</td>
</tr>
<tr>
<td>NURS 607</td>
<td>Programme Planning and Evaluation</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Semester

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 602</td>
<td>Issues in Nursing and Health Care Delivery</td>
<td>3</td>
</tr>
<tr>
<td>NURS 626</td>
<td>Independent study 2: Clinical Practice</td>
<td>4</td>
</tr>
<tr>
<td>NURS 630</td>
<td>Seminar presentation</td>
<td>3</td>
</tr>
</tbody>
</table>

Functional Electives: (Students are to select either Option A or B)

Option A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 604</td>
<td>Curriculum Development in Nursing</td>
<td>2</td>
</tr>
<tr>
<td>NURS 606</td>
<td>Instructional Methodologies and Evaluation</td>
<td>2</td>
</tr>
</tbody>
</table>

Option B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 608</td>
<td>Human Resource Management in Health Care</td>
<td>2</td>
</tr>
<tr>
<td>NURS 612</td>
<td>Administration of Health Care Institutions</td>
<td>2</td>
</tr>
<tr>
<td>NURS 640</td>
<td>Dissertation</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 40
COURSE DESCRIPTIONS

NURS 601 MANAGEMENT THEORIES AND HEALTH POLICIES
This course provides an introduction to various organizational theories underlying major management functions. Management principles are examined and applied to the health care system. Issues and factors that lead to formulation, development and implementation of health policies are discussed and the nurses’ influence in this process identified. Graduates from this programme will be expected to provide nursing leadership in senior positions in Ghana’s health care and educational systems as well as in government, non-governmental and community organizations. Classroom discussions will include: theoretical concepts relevant to structure, process, and design of organizations, leadership behaviour, the legal framework for health care, the development of health care and educational policy, innovation and change, inter-organizational politics, interdisciplinary relations, fiscal accountability, health system integration, research and evaluation. Central to the course are the implications of organization and management theory, leadership behaviour, and research activities to the education of nurses and the provision of nursing services.

NURS 602 ISSUES IN NURSING AND HEALTH CARE DELIVERY
The course examines the place of nursing in the health care delivery system: social economic, political and historical factors are examined in the context of their influence on the health of society and the delivery of health services; issues affecting the roles of nursing and inter-sectoral cooperation with other health care providers in the delivery of health services are studied within local, national and international organizations. Leadership in nursing, nursing professionalism and values, and strategies for instituting change will also be covered.

NURS 604 CURRICULUM DEVELOPMENT IN NURSING
In this course, factors that underpin and influence curriculum development are analyzed; principles, concepts and learning theories from educational psychology and nursing are applied to the process of curriculum throughout the stages of development, in relation to new programmes and curriculum change. Opportunity is provided for developing a curriculum and for examining different types of curricula for the purpose of curriculum evaluation.

NURS 605 FOUNDATIONS OF ADVANCED NURSING PRACTICE
Tools and procedures employed by nurse/midwives to develop and implement scientific- based nursing/midwifery care and practice are examined theoretically. Communication skills, complete physical assessment skills, interpersonal relationships, problem-solving approaches and values are stressed.

NURS 606 INSTRUCTIONAL METHODOLOGIES AND EVALUATION
The focus of this course is on the processes and methods of instruction of nursing students in various settings. Opportunity is provided for students to practice instructional processes of identifying learning needs and preparing and implementing teaching strategies as well as developing evaluation procedures. Emphasis will be placed on adult learning techniques.

NURS 607 PROGRAMME PLANNING AND EVALUATION
This course provides insight into programme planning and evaluation with an emphasis on health-related projects. There is a consensus within the health sector that programme planning and
evaluation represent a major constraint in both domestic and international programmes. Many project planners and administrators may not have the necessary skills or understanding to develop and manage such projects. The course will focus on theory and the application of theory related to the program planning and evaluation process.

**NURS 608  HUMAN RESOURCE MANAGEMENT IN HEALTH CARE**
This course examines leadership in instituting change, effective use of communication skills and the acquisition and maintenance of human resources in nursing service administration. Strategies for in-service education and the development of human resources are examined.

**NURS 609  INDEPENDENT STUDY 1: CLINICAL THEORY**
This innovative course affords students the opportunity for self-directed study. The course is designed to meet the needs of a wide variety of practitioners. Students will be expected to apply the theoretical knowledge and skills acquired in their various specialities to real life situations in the field. Students will be allowed to outline their own objectives and determine learning experiences that will maximize critical and/or analytical thinking. Students are encouraged to explore avenues that will enable them to gain much insight into their specialities, improve their understanding of current issues in their areas of interest, and formulate a knowledge base that will serve as a basis for a planned change in existing health services. Students will be assigned academic supervisors for on-going consultation and will be offered opportunities to share and debate their experiences with a panel of experts for constructive criticism.

**NURS 612  ADMINISTRATION OF HEALTH CARE INSTITUTIONS**
This course examines the leadership and managerial role of the nurse manager, and applies management principles and processes to nursing service. Special attention is paid to resources management including finances. Practical experience is provided by placement of students in health care institutions for observation and participation in administrative activities.

**NURS 626  INDEPENDENT STUDY 2: CLINICAL PRACTICE**
This course is designed to allow students to explore in depth, clinical areas of interest. Students will choose a specialty area of nursing, formulate objectives, learning strategies, and evaluate the outcomes. Six hours of clinical practice per week will be required. It is expected that students will use this opportunity to build on previous areas of nursing expertise or interest in order to develop advanced expertise in the area of focus. There will be regular meetings with faculty and supervisors. Papers from individual projects will be presented in an open lecture to which students, faculty, and the wider nursing community will critique.

**NURS 630  SEMINAR PRESENTATION**
The purpose of this course is to create opportunity for students to present and critique papers. Students will also be required to do a presentation on their dissertation (NURS 640) and lead a discussion about the implications of their work. Students are expected to attend and participate in all presentations.

**ASSESSMENT**
Assessment of students will be made up of continuous and terminal assessment. Continuous assessment will account for 30 per cent whilst end of semester assessment will make up 70 per cent of the course grade.
The overall assessment of courses will consist of:
1. Continuous assessment: seminars, individual and group assignments
2. Terminal assessment: end of semester examination, project work
3. Dissertation assessed by both internal and external examiners
4. Assessment of reports on field practice

M.PHIL PROGRAMME

DURATION OF PROGRAMME
4 Semester (24 months) comprising of course work and a research thesis in the second year.

ENTRY REQUIREMENTS
In addition to the general entry requirements to graduate programmes, the candidate must have been a practicing nurse for not less than 3 years.

FIRST YEAR

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 601</td>
<td>Management Theories and Health Policies</td>
<td>3</td>
</tr>
<tr>
<td>NURS 602</td>
<td>Issues in Nursing and Health Care Delivery</td>
<td>3</td>
</tr>
<tr>
<td>NURS 603</td>
<td>Theoretical Foundations for Advanced Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NURS 605</td>
<td>Foundations of Advanced Nursing Practice</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 602</td>
<td>Advanced Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 603</td>
<td>Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Statistics for Psychologists</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Pre-requisite for PSYC 602)</td>
<td>3</td>
</tr>
<tr>
<td>NURS 610</td>
<td>Seminar Presentation I</td>
<td>3</td>
</tr>
</tbody>
</table>

Functional Electives
(Candidates are to select either option A or B)

OPTION A

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 604</td>
<td>Curriculum Development in Nursing</td>
<td>2</td>
</tr>
</tbody>
</table>
NURS 606 Instructional Methodologies and Evaluation 2

OPTION B
NURS 608 Human Resource Management in Health Care 2
NURS 612 Administration of Health Care Institutions 2

Clinical Electives
(Candidates are to select only one of the following courses)

NURS 614 Adult Health Nursing 4
NURS 616 Family Health Nursing/Midwifery 4
NURS 618 Child Health Nursing 4
NURS 622 Community Health Nursing 4
NURS 624 Mental Health Nursing 4

SECOND YEAR

Core Courses Credits
NURS 620 Seminar Presentation II 3
NURS 600 Thesis 30

Presented at the end of the 2nd year based on Research of an approved topic related to Nursing and the clinical specialty area of the Student’s choice.

SUMMARY FOR M.PHIL

A. Course Work 27
B. Seminar Presentation I 3
C. Seminar Presentation II 3
D. Thesis 30

63

COURSE DESCRIPTIONS

NURS 601 MANAGEMENT THEORIES AND HEALTH POLICIES
This course introduces the student to various organizational theories that underlie the major management functions. Management principles are examined and applied to the health care industry. Issues and factors that lead to formulation, development and implementation of health policies are discussed and the nurses’ influence in this process identified.

NURS 602 ISSUES IN NURSING AND HEALTH CARE DELIVERY
The course examines the place of nursing in the health care delivery system; social, economic, political and historical factors are examined in the context of their influence on the health of society and the delivery of health services; issues affecting the roles of nursing and inter-sectoral cooperation with other health care providers in the delivery of health services are studied within local, national and international organizations. Leadership in Nursing, nursing professionalism and values, and strategies for instituting change are also covered.
NURS 603 THEORETICAL FOUNDATIONS FOR ADVANCED NURSING
This course explores current nursing concepts, theories and philosophies that provide the framework for nursing practice both in hospitals and within the community. The interrelationships among theory, practice and research are emphasized.

NURS 604 CURRICULUM DEVELOPMENT IN NURSING
Factors that underlie and influence curriculum development are analysed; principles concepts and learning theories from educational psychology and nursing theories are applied to the process of curriculum building, throughout the stages of development, in relation to new programmes and curriculum change. Opportunity is provided for developing a curriculum and for examining different types of curriculum for the purpose of curriculum evaluation.

NURS 605 FOUNDATIONS OF ADVANCED NURSING PRACTICE
Tools and procedures employed by nurses/midwives to develop and implement scientifically based nursing/midwifery care and practice are examined theoretically. Communication skills, physical assessment skills, interpersonal relationships, problem solving approaches and values are stressed.

NURS 606 INSTRUCTIONAL METHODOLOGIES AND EVALUATION
The focus of this course is on the processes and methodologies of instruction of nursing students in various settings. Opportunity is provided for students to practice instructional processes of identifying learning needs and preparing and implementing teaching strategies as well as developing evaluation procedures. Emphasis will be placed on the adult learning techniques.

NURS 608 HUMAN RESOURCE MANAGEMENT IN HEALTH CARE
This course examines leadership in instituting change, effective use of communication skills and the acquisition and maintenance of human resources in nursing service administration. Strategies for in-service education towards development and improvement of education of human resources are examined.

NURS 610 SEMINAR I
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

NURS 612 ADMINISTRATION OF HEALTH CARE INSTITUTIONS
This course examines the leadership and management role of the nurse manager, and attempts to apply management principles and processes to nursing service. The course will examine the concept, scope and importance of financial management. Practical experience is provided by placement of students in health care institutions for observation and participation in administrative activities.

NURS 614 ADULT HEALTH NURSING
This course provides the opportunity for in-depth study of the concepts, principles and theories basic to decision making in the provision of care to the sick adult, male and female, and explores interrelationships between the health of the individual and that of his family in health and during
illness. Opportunity is provided for the student to focus on the study of tools and procedures in
the care and management of patients with acute medical/surgical conditions; with chronic
medical/surgical conditions; and also on the teaching and supervision of others giving care.
Students will be required to select an area of specialty.

**NURS 616 FAMILY HEALTH NURSING/MIDWIFERY**
This course is a second level course of the study of the woman throughout her childbearing years.
Opportunity is provided for exposure to contemporary issues in the study of the three trimesters of
pregnancy, labour and peurperium, including nutritional requirements and high risk situations for
the mother and child during the various stages as well as life saving skills during labour. The
roles of other members of the family such as husbands and children are studied in relation to their
influence on mother and child health. Opportunity is provided for the management of at least 5
families. Population issues are discussed, and skills in delivering family planning services
provided. The role of the nurse midwife as a family primary provider is also expected.

**NURS 618 CHILD HEALTH NURSING**
The course provides opportunity for in-depth study of the developmental and health problems of
infants and children through adolescence. Emphasis is placed on promotion and maintenance of
health, development and prevention of health problem in this age group, in homes, institutions and
community using the multi-disciplinary approach. The nursing process is employed as the basis
of management of the more common diseases and conditions peculiar to the age group.
Opportunity is provided for the care and management of both healthy and sick children, in acute
and chronic health care facilities as well as in the community using the team approach.

**NURS 620 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her
Thesis Research Proposal and also present a progress report midway into the second semester.
These will be assessed for 3 credits.

**NURS 622 COMMUNITY HEALTH NURSING**
This course is based on the nurses’ previous knowledge of resources for community services and
various roles nurses play within this service. Socio-economic and political forces that shape
health policies will be explored. Interpretation of health policies and their implementation at the
national, regional and district levels are examined, and nursing policies derived and developed
from role expectations for community health. Emphasis will be placed on development and
analysis of community based programmes designed for health maintenance and promotion,
disease prevention and identification and utilization of resources for community health.
Opportunity is provided for special focus on services for specified population groups with
extensive practical training.

**NURS 624 MENTAL HEALTH NURSING**
The principles and practice of mental health promotion and maintenance and prevention of mental
illness are discussed as bases for study of psychopathology and therapeutics. The major
psychiatric diagnoses and interventions are reviewed with emphasis on nursing interventions.
Nursing process as a choice of nursing tool for care management is practiced both in institutional
and community management of psychiatric patients with acute and chronic conditions.
SCHOOL OF PUBLIC HEALTH

MASTER OF PUBLIC HEALTH (MPH) PROGRAMME

DURATION
The programme will be full time for a period of 12 months comprising 2 semesters of 16 weeks
each and the last quarter of the period will be devoted to Public Health Practice and the writing of a Dissertation.

ENTRY REQUIREMENT
A good first degree in a relevant discipline from a recognized university. Three years relevant working experience would be an advantage.

FIELD PRACTICE:
Students will spend up to two (2) months in the field working as public health residents under the supervision of District and Regional Directors of Health Services or other professionals in related fields who are eligible as part-time lecturers of the school. The Field Programme offers them an opportunity to apply the knowledge learned in the classroom and to acquire a critical set of competencies needed for effective public health practice. They also undertake research into health and managerial problems of relevance to the district, laboratory, sector or industry where they are posted.

ASSESSMENT
Continuous assessment during each semester will take the form of students’ reports, written assignments, assessments of field work through supervisors’ evaluation and log book. Each course will be examined in at the end of the semester in which it is taken, graded and credits awarded. The final examination consists of an assessment of the dissertation and other output during the programme.

COURSES:
A candidate is expected to obtain a minimum of 39 credits and a maximum of 48 credits of studies.

These will consist of:
1. Core Courses 16
2. Departmental Required Courses 6
3. Elective Courses 4 - 7
4. Seminars 3
5. Public Health Practice 4
6. Dissertation (including oral exams) 12

COURSE CONTENT FOR MPH PROGRAMME

<table>
<thead>
<tr>
<th>Semester I</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Core Courses</strong></td>
<td></td>
</tr>
<tr>
<td>BSTT 601 Methods in Biostatistics I</td>
<td>3</td>
</tr>
<tr>
<td>BSTT 603 Research Methods in Public Health</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 607 Principles of Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>HPPM 609 Introduction to Management of Health Services</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 611 Behavioural Science</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 613 Introduction to Population Studies</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 615 Foundations of Public Health</td>
<td>2</td>
</tr>
</tbody>
</table>

| Semester II | Departmental Required and Elective Courses |
All departmental required courses in the School are available as elective courses for students in other departments of the School.

**BIOLOGICAL, ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEOH 602</td>
<td>Environmental Health</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 622</td>
<td>Occupational Health</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 624</td>
<td>Human Health and Environmental Impact</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 626</td>
<td>Global Health Issues</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 628</td>
<td>Infection And Immunity</td>
<td>2</td>
</tr>
</tbody>
</table>

**BIOSTATISTICS**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 602</td>
<td>Methods in Biostatistics II</td>
<td>2</td>
</tr>
</tbody>
</table>

**EPIDEMIOLOGY AND DISEASE CONTROL**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDC 602</td>
<td>Advanced Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 604</td>
<td>Disease Control</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 606</td>
<td>Disease Outbreak Investigation and Response</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 618</td>
<td>Injury Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 622</td>
<td>Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 626</td>
<td>Introduction to Non-Communicable Disease Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 628</td>
<td>Economic Analysis &amp; Evaluation</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 632</td>
<td>Epidemiology of Malaria and Planning its Control</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 634</td>
<td>Epidemiological Methods for Evaluating Health Programmes and Services</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 636</td>
<td>Selected topics in Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 638</td>
<td>Cardiovascular Disease Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 642</td>
<td>Pharmaco-epidemiology and Pharmaco-vigilance</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 644</td>
<td>Veterinary Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

**HEALTH POLICY, PLANNING AND MANAGEMENT**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPPM 642</td>
<td>Advanced Health System Development and Management</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 644</td>
<td>Health Policy Development, Research And Analysis</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 646</td>
<td>Advanced Health Policy</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 648</td>
<td>Advanced Health Planning</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 652</td>
<td>Health Legislation</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 654</td>
<td>Health Systems Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 656</td>
<td>Applied Economics for Health Policy</td>
<td>2</td>
</tr>
</tbody>
</table>

**POPULATION, FAMILY AND REPRODUCTIVE HEALTH**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFRH 606</td>
<td>The Family in Health and Ill-health</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 608</td>
<td>Child Health in Public Health</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 612</td>
<td>Child Growth Development And Health Maintenance</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 614</td>
<td>Public Health Nutrition</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 616</td>
<td>Motherhood Issues and Maternal Morbidity &amp; Mortality</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 624</td>
<td>The Adolescent in Health and Illness</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 628</td>
<td>Theory and Research Techniques in Adolescent Health</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PFRH 632</td>
<td>Fertility and Family Planning</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 634</td>
<td>Populations, Health and Survival</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 636</td>
<td>Clinical and Organizational Practices of Reproductive Health Services</td>
<td>2</td>
</tr>
</tbody>
</table>

**SOCIAL AND BEHAVIOURAL SCIENCES**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 602</td>
<td>Implementation Research</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 604</td>
<td>Social Science Data Management and Report Writing</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 608</td>
<td>Gender and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 670</td>
<td>Fundamentals of Implementation Research</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 618</td>
<td>Health Research Policy Development and Implementation</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 614</td>
<td>Evidence-Based Approach to Health Communication</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 616</td>
<td>Global Perspectives in Health Promotion</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 612</td>
<td>Theories and Models of Health Promotion</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 620</td>
<td>Applied Social Science for Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 650</td>
<td>Health Promotion and Practice</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 622</td>
<td>Community Mobilisation in Health and Development</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 624</td>
<td>Ageing and Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 626</td>
<td>Women’s Health in Sub-Saharan Africa</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 628</td>
<td>Gender and Violence</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 632</td>
<td>Behaviour Change Theories in Public Health Practice and Research</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 634</td>
<td>Health and Development in the Third World</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 636</td>
<td>Plural Medical Systems in the Developing World</td>
<td>2</td>
</tr>
</tbody>
</table>

**Semesters I & II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEOH 610</td>
<td>Seminars in BEOH</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 610</td>
<td>Seminars in EPDC</td>
<td>3</td>
</tr>
<tr>
<td>HPPM 610</td>
<td>Seminars in HPPM</td>
<td>3</td>
</tr>
<tr>
<td>PFRH 610</td>
<td>Seminars in PFRH</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 610</td>
<td>Seminars in SOBS</td>
<td>3</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDC 620</td>
<td>Computers in Public Health Research</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 630</td>
<td>Public Health Practice in BEOH</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 630</td>
<td>Public Health Practice in EPDC</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 630</td>
<td>Public Health Practice in HPPM</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 630</td>
<td>Public Health Practice in PFRH</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 630</td>
<td>Public Health Practice in SOBS</td>
<td>2</td>
</tr>
<tr>
<td>BEOH 640</td>
<td>Dissertation in BEOH</td>
<td>12</td>
</tr>
<tr>
<td>EPDC 640</td>
<td>Dissertation in EPDC</td>
<td>12</td>
</tr>
<tr>
<td>HPPM 640</td>
<td>Dissertation in HPPM</td>
<td>12</td>
</tr>
<tr>
<td>PFRH 640</td>
<td>Dissertation in PFRH</td>
<td>12</td>
</tr>
<tr>
<td>SOBS 640</td>
<td>Dissertation in SOBS</td>
<td>12</td>
</tr>
<tr>
<td>BEOH 660</td>
<td>Special Electives in BEOH</td>
<td>2</td>
</tr>
</tbody>
</table>
EPDC 660  Special Electives in EPDC  2
HPPM 660  Special Electives in HPPM  2
PFRH 660  Special Electives in PFRH  2
SOBS 660  Special Electives in SOBS  2

**Semester II Departmental Required And Elective Courses**

All departmental required courses in the School are available as elective courses for students in other departments of the School.

The special electives (BEOH 660, EPDC 660, HPPM 660, PFRH 660, SOBS 660) will consist of special tutorial courses which will allow one or two students to attach themselves to a senior member in a specific department whose area of specialisation is of particular interest to them. A programme of work comprising a comprehensive reading list in the subject and work such as assisting in the analysis of research or other technical activity will be drawn for students taking special electives.

**SCHEME OF EXAMINATION**

Students will be assessed continuously during and at the end of each course. The examination components will be:

1 to 3 hours written papers at the end of the first and second semesters.

The examination of the dissertation will be by assessment of each student by internal and external examiners, who will also examine the candidate orally.

**COURSE DESCRIPTIONS**

**BSTT 601 METHODS IN BIOSTATISTICS I**

This course introduces the basic statistical concepts and methods as applied to diverse problems in public health, medicine and clinical trials. It demonstrates methods of exploring, organizing, and presenting data, and introduces fundamentals of probability, including probability distributions and conditional probability with applications to case-control studies and diagnostic testing. It presents the foundations of statistical inference, including concepts of population parameter, sampling and sampling distribution of estimates, and approaches to inferences using confidence intervals and hypothesis tests for normal and non-normal data, sample size estimation, contingency tables and chi-square tests, 1-way analysis of variance, simple linear regression and correlation. Statistical software packages, STATA and SPSS are employed to manipulate data and for data analysis.

**BSTT 603 RESEARCH METHODS IN PUBLIC HEALTH**

The course focuses on the steps involved in planning and implementing a piece of research. It includes an exposition of the theoretical approaches to and practical applications of research. An introduction to empirical methods, including qualitative and quantitative methods, the design of surveys and experiments (including Clinical Trials) and analysis of the resulting data, sampling, questionnaire design, data collection and data processing. The course also discusses ethical issues involved in medical research, such as patient consent and confidentiality.

**EPDC 607 PRINCIPLES OF EPIDEMIOLOGY**

Definitions: uses of epidemiology. Disease and health. Disease measurement and
significance of indices used. Mortality measurement and significance of indices used. Standardization of rates. Epidemiological methods; descriptive, analytic, experimental. Application of epidemiology to investigation of epidemics and for community diagnosis. Epidemiology of Diseases; Communicable diseases, Non-communicable Diseases. Screening. New Epidemiological Concepts, for example, Burden of disease, DALYs, special groups at risk.

**HPPM 609 HEALTH SYSTEMS MANAGEMENT**

GSPH 609 is a three credit course comprising 18 sessions of 2 hours each to make a total of 36 hours of teaching material. Each of the 6 modules in this course covers 3 sessions of teaching (6 hours). Thus each unit covers one hour of teaching material. Students are expected to read the materials that go with each session before the class to facilitate teaching and learning as well as constructive discussion.

**EPDC 615 FOUNDATIONS OF PUBLIC HEALTH**


**SOBS 611 BEHAVIOURAL SCIENCE**

This course is in two (2) parts. Health and Development work requires that professionals with different training backgrounds work together to address problems in the field. The first part of the course, therefore, addresses the Principles and Methods of Group Dynamics, Team Building and Teamwork.

The second part of the course is based on the premise that most of society’s health and disease problems are behaviour/lifestyle induced. The students are exposed to the social, economic, political and cultural contexts within which health and illness occur. Opportunities are given which enable students to appreciate public health and related problems more holistically and to assess critically the impact of socio-cultural dynamics on the health seeking behaviour of individuals and groups in society.

**PFRH 613 INTRODUCTION TO POPULATION STUDIES**

The course is designed to furnish the student an overview of demographic perspectives and tools in the investigation of Public Health issues. The course is designed to cover major concepts and theories, major problems societies face in the field of population and health and their responses (policies, strategies, programmes, etc.). In this respect, topics to be covered include: basic concepts:population growth and socio-economic development, rates and ratios, sources of demographic data, data evaluation, age-sex composition, estimates and projections, ideal family size, fertility preference, value of children, measures of infant, foetal and perinatal mortality, construction of crude and adjusted mortality rates, contraceptive technology and reproductive health risks, the role of women, observed gender variations in demographic, economic and social characteristics, dependency model, demographic transition, epidemiologic transition, and Coale and Hoover theory.
EPDC 620  COMPUTERS IN PUBLIC HEALTH RESEARCH
Basic concepts of Web structure and its application in science, Internet/Email and applications, finding and using online literature, search for information on the internet.

Use a computer to manage data in field investigation, introduction to data processing and analysis, designing questionnaires, data entry, cleaning and validation in Epi Info, basic data management in Stata (labeling, recoding, writing do – and log – files).

Students will be introduced to the advanced principles of STATA, including data management, manipulation and analysis. Students will be taught how to create new datasets, specifying subsets of data, generating and replacing variables, importing data from other programs, combining two or more datasets, etc. in addition they will be taught how to generate summary statistics, including generation of two-way and multiple-way cross tabulations. They will be introduced to how to generate tests statistics and hypothesis. It is also expected that by the time students would have gone through the course, they would have been introduced to how to run regression analysis as well as doing diagnostic test. Finally, students will be taught how to generate graphs from their data.

BIOLOGICAL, ENVIRONMENTAL AND OCCUPATIONAL HEALTH SCIENCES

BEOH 602  ENVIRONMENTAL HEALTH
The Environmental Health course is designed to give students a wide range of knowledge on the basic principles of Environmental Health. The course prepares the student to participate in the planning and administration of environmental health programmes and to develop policies and regulations relevant to the protection and improvement of the physical environment. The course includes topics on basic principles of Environmental Health, identifying the environmental hazards to which men are exposed, modes of transmission of the hazards to men and the corresponding measures for protection against or prevention of transmission. It also touches on the basic principles in designing of Environmental Health programmes.

BEOH 622  OCCUPATIONAL HEALTH
Students will undertake advanced courses in Occupational Medicine and Hygiene in relation to agriculture, industrialisation and topics relating to the national and international economic activities and social issues. Discussions will focus on research in any aspect of hazards and patho-physiology.
encountered in the working environment, particularly in the area of respiratory physiology and related population predicted values. Advanced studies in Occupational Epidemiology, Ergonomics, Occupational Toxicology and Psychology will be emphasized. Legal and administrative aspects of occupational safety and health and compensation issues will be explored.

**BEOH 624  HUMAN HEALTH AND ENVIRONMENTAL IMPACT**

The impact of pathogens on our health and wellbeing can be understood as an interaction between the physical environment and the complex “environment” of the human body. In addition to these, the challenges of our working environment with its associated hazards need to be highlighted in our various occupations. The course is fundamental in nature and is organized under four subheadings as indicated below.

Ecology and Health  
Microbes and Parasites  
Environmental Health  
Occupational Health

**BEOH 626  GLOBAL HEALTH ISSUES**

The goals of the programme in Global Public Health Issues focus on International Public Health Programmes for Prevention and Control of Diseases and Disabilities and in Advancing the Health of Populations worldwide. The course includes presentations on topics such as Global Overview of Challenges faced in the areas of Global Health including Medical, Cultural, Historical, Economic, and Political Influences. The course will also address the adequacy of the scientific base to support improvements in Health and Health Care, Tropical Medicine Issues (including diseases that impact on Global Health and Health Care Systems in Transition. It will Include Assessment of Biomedical Knowledge and Research for the reduction of Behavioural, Socio-economic and Environmental Risks to Public Health, Ethical Issues on Public Health, Availability of Trained Health Personnel, Institutional Capacity Building for Health Research and Establishment of Supportive Partnership and Collaboration.

**BEOH 628  INFECTION AND IMMUNITY**

The programme focuses on Health Challenges of Infections and Parasitic Diseases, Concepts and Reality. The programme emphasises on Training for Public Health Practitioners who will use their training in Immunology, Epidemiology, Laboratory and Statistics to improve the protection of Populations from vaccine-preventable diseases. Courses will include Epidemiology, Pathogenesis and Immunity of Infectious Diseases, Principles of Immunisation, Vaccinology and will establish a forum on microbial threats. The diverse faculty of physicians, epidemiologists, vaccinologists and biostaticians will bring to this course their expertise and research related to prevention and control of diseases including community-based prevention trials, laboratory studies in vaccine development and testing; phase I, II, and III clinical trials and developing new approaches to the detection and control of morbidity and mortality.

**BIOSTATISTICS**

**BSTT 602  METHODS IN BIOSTATISTICS II**

Pre-requisite: BSTT 601  Methods in Biostatistics I
This course expands on the student’s abilities to conduct and report the results of valid statistical analysis of quantitative public health information by focusing on multiple linear regression, two-way analysis of variance models, covariance analysis with single covariate, nonparametric methods, logistic regression with dichotomous and continuous independent variable, introductory survival analysis, and sample size determination controlling for both type I and type II errors.

**EPIDEMIOLOGY AND DISEASE CONTROL**

**EPDC 602  ADVANCED EPIDEMIOLOGY**

Data interpretation and hypothesis generation, Causation – Koch’s postulate and modern causality structure, Study design specifics – Case-Control studies, case and control selection, Cohort studies – prospective, retrospective Analytical Cross-sectional studies, Experimental studies – randomized trial, Measures of association and impact - 2 by 2 tables absolute risk, relative risks and odds ratios, attributable risk, Rate standardization – direct and indirect adjustment, Confounding and effect modification – random error and systematic error, types of bias, control of confounding, Analyzing complex surveys and the use of matching, Sampling – methods, cluster, estimation, Qualitative methods – focus groups, key informants, Exploratory data analysis, Regression – linear and logistic regression.

**EPDC 604  DISEASE CONTROL**

General concepts of communicable and non-communicable diseases. Definitions. Reportable diseases. Quarantinable disease. Factors influencing communicable diseases transmission process. Control of Oral-faecal transmitted diseases; Vector-borne diseases, Sexually transmitted diseases; Water related diseases; Contact diseases; Zoologic diseases and Air borne diseases.

**EPDC 606  DISEASE OUTBREAK INVESTIGATION AND RESPONSE**

Introduction to Integrated Disease Surveillance and Response; The Role of the Laboratory in Integrated Disease Surveillance and Response; Investigate and Respond to Suspected Outbreaks/ Epidemics (Introduction, Case Control Studies, Report Writing); Public Health Disease Surveillance; Introduction to Scientific Writing.

**EPDC 618  INJURY EPIDEMIOLOGY**

Introduction to injury as a public health problem. Research methods, study designs, risk factors, and prevention strategies applied to the problem of injuries. General framework for students to apply to the study of specific injury mechanisms.

**EPDC 622  SCIENTIFIC COMMUNICATION**

Identification of target audience. Scientific writing: articles, perspectives, review articles, editorials, executive summaries, books. Review and creation of abstracts. Responsibilities of authorship and co-authorship and intellectual property rights, including patent. Dissemination of research findings: oral scientific presentations, lectures, posters, bulletin articles, scientific articles for peer-reviewed journals, internal office correspondence; Media relations. Public Health Advocacy. (Workshop)

**EPDC 626  INTRODUCTION TO NON COMMUNICABLE DISEASE**
EPIDEMIOLOGY
An overview of non-communicable diseases in both developed and developing country settings, the global burden of such diseases, temporal trends in mortality from cardiovascular diseases and cancer, diet and cancer and the epidemiology and prevention of mental disorders. Developing and criticising strategies for preventing cardiovascular disease at the community and individual level.

EPDC 628 ECONOMIC ANALYSIS & EVALUATION
General principles of economic analysis: purpose of cost analysis, components of cost analysis: direct, indirect tangible costs, outcome components: health related, non health related, Define prevention effectiveness, Frame a prevention effectiveness study.

Decision analysis: components of decision analysis, decision trees, utility analysis
Burden of disease measures: QALY, DALY, YPLL, Interpret results to determine burden of disease

Choose appropriate analysis: Cost analysis, cost-effective analysis, cost-utility analysis, cost-benefit analysis, sensitivity, specificity, predictive values, evaluation methods, quality indicators, Monitoring and Evaluation (M and E): Tools development for M and E, Procedures and processes of M and E. Assessing the efficacy therapeutic and preventive measures

EPDC 632 EPIDEMIOLOGY OF MALARIA AND PLANNING ITS CONTROL
Epidemiology of malaria, Surveillance, Planning for malaria control, communication: community mobilization and advocacy, Strategic management functions and practices, Health economics and social aspects of malaria, Malaria research agenda and process, Strategic orientation of prevention and control of malaria.

EPDC 634 EPIDEMIOLOGICAL METHODS FOR EVALUATING HEALTH PROGRAMS AND SERVICES
Definition of health evaluation, Methodological frameworks for evaluating health programs, Health evaluation categories & indicators, Typologies of indicators for evaluation of public health services, Research designs for evaluative studies, How to quantify effects of health programmes, Reporting health evaluation.

EPDC 636 SELECTED TOPICS IN EPIDEMIOLOGY
Readings in the philosophy and technique of epidemiologic modelling. Peer review process including validity and reliability of the peer review system. Common mistakes in reporting results from epidemiologic research.

EPDC 638 CARDIOVASCULAR DISEASE EPIDEMIOLOGY
History of cardiovascular disease (CVD) epidemiology, Classification of CVDs, Epidemiology of CVDs in rich economies, Epidemiology of CVDs in LMICs, Genetic basis of CVDs, Paediatric causes of CVDs, Tobacco control, Obesity, Stroke, Coronary artery disease, Rheumatic heart disease, Diabetes and cardiovascular diseases, Conducting field trials in CVDs, Approaches to control of CVDs – dietary approaches.

EPDC 642 PHARMACOEPIDEMIOLOGY AND PHARMACOVIGILANCE
Principles of Pharmacovigilance, Pharmacovigilance Reporting Systems,

EPDC 644  VETERINARY PUBLIC HEALTH
The Veterinary Public Health includes Advanced Meat and Milk Hygiene, Meat Quality, Fish and Shellfish Hygiene, Introduction and Review of Fish Hygiene in Ghana, Fish-borne Diseases, Microbial Safety of Fishery Products; Zoonotic and other Communicable Diseases, a Review of Zoonotic Diseases and their Classification, Bacterial, Viral, Parasitic and Zoonoses Prevention, Detection, Prevalence and Control of Zoonoses in Ghana, Veterinary Jurisprudence, A Review of Acts, Regulations, Rules and Orders relating to animal movements, importation and trade cattle routes, Legislation regulating the importation, marketing and uses of veterinary drugs and other biologicals, international aspects and responsibilities in Veterinary Jurisprudence; Applied Veterinary Immunology; Biological Basis of Health and Disease, Infection, Diseases and Immunity, Serological Epidemiology; Diseases Monitoring, Surveillance and Reporting; Animal By-Products and Quality Control Measures Advances in Veterinary Extension, Promotion and Delivery

HEALTH POLICY, PLANNING AND MANAGEMENT

HPPM 642  ADVANCED HEALTH SYSTEMS DEVELOPMENT AND MANAGEMENT
The objective of this course is to improve health care delivery through better understanding and management of resources (human, financial, raw materials, technological and information) health care services and stewardship.

HPPM 644  HEALTH POLICY RESEARCH AND ANALYSIS
This two-credit course focuses on the identification and generation of empirical evidence to inform the content of health policy and health systems reform. It provides a practical guide to the identification of health policy and systems development and reform issues that need research to generate empirical data to support decision-making. It also provides skills in identifying and reviewing existing information related to the problem or issues on how to conduct multi-disciplinary health policy and systems research to generate new information, analyze the findings and provide recommendations in clear succinct reports. It also provides an introduction to the concepts and methods of public analysis. The emphasis is on providing students with analytical skills that can be applied.

HPPM 646  ADVANCED HEALTH POLICY
This two-credit course (24 hours of teaching material) critically examines factors that influence the development and implementation of health related public social policies and their accompanying programs in developing countries. It also emphasizes how to use this understanding to improve the process of public policy and program development and implementation for health. Methods and sills in influencing and advocating for public policy design and implementation are introduced.
The course is intended for MPH, MPhil and PhD residents who are interested in understanding the factors that influence health-promoting policies nationally and in developing skills in health policy advocacy. The course will be useful to those with interest in health development, responding to priority public health problems, developing strategic policies based on health criteria and using research evidence in enhancing the policy process. This course will be valuable for residents with careers or planning to enter careers in public service. It will also be useful to residents who work with NGOs or other organizations but whose works involve aspects of public policy advocacy, design and implementation at all levels.

As a prerequisite, registrants for this course should have taken introductory courses HPPM 609 and 608 in which the definition, concepts and evolution of health systems and the process of policy formulation are covered.

**HPPM 648 ADVANCED HEALTH PLANNING**

Introduction to planning; Elements of Planning; Types of Planning Activities; Planning, Policy – making and Implementation; The Political Context of Planning; Planning for Health; Development of Government Policies and Plans; Role of non-State Sector; Non – Government Organizations; Planning for multi-sectoralism; Techniques for planning; planning process; Data Collection; Analysis and Presentation; Modeling and Forecasting; Implementation, Monitoring and Evaluation; Organization and Planning; Operational and Spatial levels of planning activity; Health Information Systems; Information and Planning; Identifying information needs and indicators, routing and non-data collection methods; Information technology and Health Information System Management of Health Information Systems. Using Computers in Health Information Systems; Basics of Geographical Information Systems; Influences on Health Information System design; Approaches to Strengthening Health Information Systems; Health Information System Reform.

**HPPM 652 HEALTH LEGISLATION**

This is a two credit hour course which will cover basic introduction to legislation and health as well as principles behind the existing health legislation. It is a field that health workers tend to neglect.

Governments of nation states are run on clearly stated policies. For these policies to be implemented effectively, it is necessary that they are backed by legislation. Thus Parliament passes the laws from these policies. These then become binding to the people of the country.

Legislation pertaining to health is known as Health Legislation. It is a set of rules or norms of conduct relating to health which forbid, permit or mandate specified actions and relationships among people and organization. They are needed to ensure that quality health services are provided to the members of the community. Health Legislation protects the public from (substandard) health services. Health Legislation is to guide health service delivery for quality and efficiency.

Health practitioners are guided by set of codes derived from Legislation. Invariably some of them come to realize there is legislation only when they have had altercations with the law.

**HPPM 654 HEALTH SYSTEMS RESEARCH METHODS**
Health systems research (HSR) is a challenging and creative professional activity that develops knowledge to inform decision in health care delivery. This course provides students with the opportunity to become familiar with the elements of a research proposal and to develop their own. Ideally, each student will select a topic they plan to pursue for their dissertation research and develop the research proposal during the 12 week programme.

**HPPM 656 APPLIED ECONOMICS FOR HEALTH POLICY**

HPPM 656 is an advanced economics course that builds on the introductory course in Economics of Health Care (HPPM 609). Requirement for the course is the introductory course in Economics of Health Care of 609 (Module 6). Candidates with a diploma/degree in Economics may be exempted from this requirement after demonstrating adequate understanding of economics of health care.

**DEPARTMENT OF POPULATION, FAMILY AND REPRODUCTIVE HEALTH**

**PFRH 606 THE FAMILY IN HEALTH AND ILL-HEALTH**

The course is an introduction to today’s family types, roles and functioning and the challenges they present to public health workers, which need to be fully understood in order to equip them for effective dealings with families.

**PFRH 608 CHILD HEALTH IN PUBLIC HEALTH**

The health problems of children as an identifiable vulnerable group take a large proportion of public health workers’ professional time. This course acquaints students with the determinants, scope and levels of child health care in Public Health. It will also provide students with insights into embryonic development and factors that affect it; infancy and early childhood – healthy and deviations; dimensions of Child-Personhood: biophysical, psychosocial and cultural; child-environment interactions – parent-child, familial, community and wider macro-environment as stimuli; psychological and intellectual development of the child; child vulnerabilities and resilienties; preventive health care from birth to adolescence; socio-medical and chronic childhood problems; major threats to child survival – contribution of IMCI, neonatal emergencies, congenital abnormalities, failure to thrive,

**PFRH 612 CHILD GROWTH DEVELOPMENT AND HEALTH MAINTENANCE**

This is a course designed to develop and refine advanced clinical and programme organising skills of child health care professionals. Problems of children as an identifiable vulnerable group are addressed in the course by drawing upon the experiences of incumbent program managers.

**PFRH 614 PUBLIC HEALTH NUTRITION**

This course provides basic nutritional information and is designed to enable students develop the insight in Nutrition Issues, on the acquisition and efficient utilisation of food resources that ensure optimal growth, development and health.

**PFRH 616 MOTHERHOOD ISSUES AND MATERNAL MORBIDITY & MORTALITY**

This course is designed to enable students to develop insight into the issues, concerns and
considerations that affect pregnancy and childbearing and underpin policy-making and programme development in safe motherhood programmes.

**PFRH 624 THE ADOLESCENT IN HEALTH AND ILLNESS**
This course is designed to give students an understanding of the biological and psychosocial development that occurs during the transitional period between childhood and adulthood. It also looks at some of the health problems and the social challenges that affect adolescents.

**PFRH 628 THEORY AND RESEARCH TECHNIQUES IN ADOLESCENT HEALTH**
This course is designed to give students an understanding of research into adolescent health and development, particularly reproductive health issues affecting adolescent males and females.

**PFRH 632 FERTILITY AND FAMILY PLANNING**
This course summarizes evidence concerning the relationship between reproductive patterns and women’s reproductive health. It discusses the effectiveness and health consequences of specific contraceptive methods and women’s reproductive health. It also discusses issues and programmatic strategies related to the development, organization and management of family planning programmes in developing countries with emphasis on social, cultural, political and ethical barriers to family planning programmes.

**PFRH 634 POPULATION, HEALTH AND SURVIVAL**
This course summarizes the make up of existing and emerging disease patterns as they affect various population subgroups, with focus on disease patterns when society undergoes modernization.

**PFRH 646 CLINICAL AND ORGANIZATIONAL PRACTICES OF REPRODUCTIVE HEALTH SERVICE**
A course for mid career reproductive health practitioners that addresses the clinical and organizational requirement for effective reproductive health service delivery.

**SOCIAL AND BEHAVIOURAL SCIENCES**

**SOBS 602 IMPLEMENTATION RESEARCH**
The course will introduce students to the three cycles if Implementation research: Pre-intervention, intervention and post intervention cycles. Students will also be introduced to the community entry techniques, situational techniques, stakeholders’ analysis, stakeholder consultations, cultural and social relations in the community.

**SOBS 604 SOCIAL SCIENCE DATA MANAGEMENT AND REPORT WRITING**
The course will seek to introduce students to theories that underlie the processes on interpreting and analyzing data. Qualitatively, the course will stress on how to transcribe (verbatim) all interviews and discussions; incorporate all notes and observations for an interview into the transcript; includes background information on respondents or people observed; how to use and apply all Participatory Rural Appraisal (PRA) tools; code the main segments of their text using interview guide; produce a research/problem solving matrix; check for consistency and
inconsistencies in the responses and interpret the information using all sources of information; put the information into various topics/themes based on objectives of study and add quotes, proverbs, local sayings etc that help explain information collected. Quantitatively, the course will emphasize on data sorting and quality control checks; data entry and processing; verification and analysis of data and triangulate the qualitative and quantitative data.

SOBS 608  GENDER AND HEALTH
The main aim of this course is to provide Public Health and Development Workers with the relevant understanding of the role of gender in health and welfare of the populace. The course examines the interrelationship of gender and health. It examines the socio-cultural, socio-political and socio-economic constructs of gender and how these constructs impact on women and men’s health in the developing world. The central idea of the course, however, is to move beyond a description of specific health problems to critically analyze how women and men’s health problems develop, are perceived, and are responded to both medically and socially in contemporary society. In this context, an important theoretical aspect of the course is the development of a socio-medical perspective on health and, specifically, the analysis of women and men’s health in relation to their lives and how these experiences are shaped by culture, social institutions and social policies. Some topics under this course are gender concepts; patriarchy; gender, experience, culture, power, and health; poverty, health and health care, gender and men’s health.

Additionally, it explores the various ways in which the study of gender and health helps Public Health and Development workers to understand women and men’s health in a changing world.

SOBS 612  THEORIES AND MODELS OF HEALTH PROMOTION
This course is designed to help students understand why theories, models, and constructs are considered the backbone of the processes used to plan, implement, and evaluate Health Promotion interventions. During the course, students are provided with opportunities to review some social science and/or behavioural theories and models and explore how these can be used to guide programme planners in selecting the type of interventions that are needed to accomplish specified goals and objectives. The appropriate use of learning and behavioural theories can help to ensure congruence between the planned interventions and expected outcomes.

SOBS 614  EVIDENCE- BASED APPROACH TO HEALTH COMMUNICATION
The course is designed to walk the students through the steps of a communication plan which has to be based on good research. Students need to understand the importance of having a plan in place before developing communication activities. The planning steps begin with the identification of the problem to be addressed and the target population as well as behaviours that need to change. Then a formative assessment is conducted to help identify the communication objective. Community design and strategy development workshops are held to facilitate the process of selecting communication approaches. Messages are developed and channels selected before materials are developed and produced.

SOBS 616  GLOBAL PERSPECTIVES IN HEALTH PROMOTION
The course is designed to help the student examine the challenges associated with the implementation of Health Promotion activities around the globe with special reference to developing country
contexts. It also provides insights into how to design effective strategies within severe resource constraints. Health Promotion interventions have contributed to substantial improvements in the health status of many nations. Systematic motivations of families clearly helped bring about the reductions in mortality rates recorded in many countries. In recent years, these impressive gains in maternal and child survival have leveled off in some countries; while in others, the positive trends have even reversed. Important lessons learned will be discussed.

SOBS 618 HEALTH RESEARCH POLICY DEVELOPMENT AND IMPLEMENTATION
This course aims at providing a general understanding of how public policies and programmes are developed in the sub-Saharan Africa context at all levels. It also aims at providing some understanding of the factors that affect the success or failure of control policy and programmes development and the basic principles of advocacy for better policy and programmes development and implementation at all levels of the health system.

SOBS 620 APPLIED SOCIAL SCIENCE FOR PUBLIC HEALTH
The aim of this course is to introduce students to the theoretical underpinnings of the range of social sciences that are applied in public health research and practice. These include anthropology, demography, economics, geography, law, political science, psychology, and sociology. Students will explore the challenges of multidisciplinary, inter disciplinary, and cross-disciplinary research and practice. These applied social science disciplines were developed in response to increasing specialties that employed and adapted the principles of the disciplines in the study of contemporary societies. Applied Social Science for Public Health is an interdisciplinary and dynamic field, which integrates the knowledge and tools for research and analysis from a range of these disciplines for the purposes of understanding the various determinants of health and developing solutions to public health problems.

SOBS 622 COMMUNITY MOBILISATION IN HEALTH AND DEVELOPMENT
This course is designed to introduce students to commonly used communication approaches at the periphery and help them develop community mobilisation plans. In order for community mobilisation to be successful, it is essential that all people and organisations involved feel ownership of the plan, support the plan, and are engaged in implementing the plan. Community mobilisation uses a variety of communication channels and usually relies heavily on face-to-face communication. Practical examples will be discussed and the group process outlined.

SOBS 624 AGEING AND HEALTH
The course introduces students to the issues of global ageing in general and with reference to Africa in particular. The impact of ageing on the structure and composition of society and its implications for the economy, health, and development will be discussed. The course also explains the magnitude of health and development issues as they relate to ageing and enables students to do a gender analysis of these issues. Students will be given the opportunity to review existing policies and programmes and identify gaps and issues for research, advocacy, and planning.
SOBS 626 WOMEN’S HEALTH IN SUB-SAHARAN AFRICA
The main goal of the course is to explain a variety of health problems faced by sub-Saharan African women, often compounded by cultural values, and religious principles that influence decision-making processes on reproductive and other health issues. The course will also review various factors that impinge on women’s health and emphasize some of the emerging changes brought about by gender mainstreaming of health issues in sub-Saharan Africa. Students will have the opportunity to compare the situation of sub-Saharan African women with those from other parts of the world including the United States.

SOBS 628 GENDER AND VIOLENCE
This course introduces students to the demographic, socio-cultural, and economic factors that impact on gender and violence. Students will be exposed to a wide range of issues that include physical, emotional, and sexual abuse. They will also look at the impact of violence on mental health and the various coping strategies and responses to physical violence.

SOBS 632 BEHAVIOUR CHANGE THEORIES IN PUBLIC HEALTH PRACTICE AND RESEARCH
Public health is about the prevention of diseases, injuries and disability as well as the promotion of good health all of which require change in human behaviour. This course examines, in detail, theoretical frameworks in the social sciences such as the health belief model, social cognitive theory, stage theory, theory of reasoned action and others. Emphasis will be given to the application of these theories in public health practice, design of evaluation of public health interventions and in research.

SOBS 634 HEALTH AND DEVELOPMENT IN THE THIRD WORLD
For the past decade or so, the relationship between health and development has been discussed at both the national and international level. This course will allow students to examine the various social, economic and political changes that have taken place in the developing world and analyze the impact such changes have had on the health status of populations. The course will define development and explain the link between health and development. It will then review some social and economic development theories as well as the demographic and health transition theories in relation to the developing world. This will lead to an examination of the demographic/health profile of developing nations (e.g. Ghana) and the historical perspective of development policies and their impact on health delivery. This course will also examine critical health issues and their impact on the development and health delivery efforts of developing countries (e.g. HIV/AIDS, Malaria etc). The role of international agencies in health delivery and the impact of urban growth on health delivery will also be discussed by the class.

SOBS 636 PLURAL MEDICAL SYSTEMS IN THE DEVELOPING WORLD
Indigenous people have developed regimes for addressing health needs. With the introduction of biomedicine, the pattern of health seeking behaviour has changed to accommodate the diverse health resources. The course will examine the rationale for several medical systems in the developing world and how these health resources are utilised at the individual and national level.

SOBS 650 HEALTH PROMOTION AND PRACTICE
The course is designed to enhance the student’s knowledge of the basic concepts and strategies of Health Promotion. It will provide opportunities for appropriate application of Health Promotion
interventions in changing and uncertain environments with special focus on key players charged
with preventing diseases and promoting Public Health. Emphasis will be placed on behaviour
change theories, strategies and methods for responding to emerging and pertinent Public Health
issues. Students will be exposed to the importance of research in Health Promotion and Practice
and also encouraged to appreciate the role of Health Promotion in Public Health Practice.

SOBS 670  FUNDAMENTALS OF IMPLEMENTATION RESEARCH
This course seeks to provide an overview of the principles underlying implementation research.
Implementation research for disease control is applied social science related research that aims to
develop the critical evidence base for the effective and sustained adoption of interventions. It deals
with the knowledge gap between efficacy, effectiveness, and current practice to produce the
greatest gains in disease control. Implementation research involves the systematic and critical
investigation and analysis of the dynamic processes that influence how individuals, populations
and health systems adapt in order to adopt new technologies and interventions. Additionally the
course will provide active and experiential learning involving fieldwork and research, introduce
students to population profiles, community entry techniques, community involvement in research
and collaborative research.

BEOH 610, EPDC 610, HPPM 610, PFRH 610, SOBS 610  SEMINARS
All students in a Department or Programme at this level are expected to attend all seminars
specified and be made to give at least one seminar on a review article which, may or may not be in
their area of intended research. A student should make a presentation on his/her dissertation
proposal and also attend all seminars at the Department. Both presentations should be graded
using a common format designed and should earn each student a total of 3 credits.

BEOH 630, EPDC 630, HPPM 630,
PFRH 630, SOBS 630  PUBLIC HEALTH PRACTICE
Public Health Practice comprises field visits during the first and second semesters and a 3-month
field residency during the second semester. During Public Health Practice, students work as part
of the health team to acquire competencies needed for managing systems and programmes. The
competencies include Community Assessment and Design of Health Survey; Investigation and
Control of Disease Outbreaks; Community Mobilisation for Health Action Education, and
Effective Communication.

BEOH 640, EPDC 640, HPPM 640,
PFRH 640, SOBS 640  DISSERTATION
The objective of the dissertation is to test the students’ skills in defining a problem and designing
appropriate research into the problem. It will also test skills in writing literature search and
analytical thinking. The dissertation should not be more than 80 pages.

BEOH 660, EPDC 660, HPPM 660,
PFRH 660, SOBS 660  SPECIAL ELECTIVES
A special elective may consist of special tutorial courses, which will allow one or two students to
attach themselves to a senior member whose area of specialisation is of particular interest to them.
A programme of work drawn up by the student and the senior member including a comprehensive
reading list must have prior approval by the Director of the School. A special elective may also
consist of a structured course on any emerging subject of Public Health importance, which may be
offered on an ad hoc basis if and when the need arises.
MASTER OF HEALTH INFORMATICS

Entry Requirement
A good first degree in a relevant discipline (science, technology or a medical/health specialty, social science, law) is required. Undergraduate coursework in elementary statistics and basic mathematics are desirable. Computer literacy in basic computer applications e.g., word processing, e-mail and use of the Internet would be an advantage.

PROGRAM STRUCTURE AND DURATION
The program will cover a full time period of 12 months, made up of 2 semesters and a 12-week practical period with a host institution, and the writing of a field practicum report.

HEALTH INFORMATICS PRACTICUM
Students will spend a 12—week practical period on the field acquiring compe-tencies in health informatics with institutions whose functions are identified to be relevant to the objectives of the program, and that are also capable of providing the training grounds for the students. The field practicum also provides an opportunity for the student to apply classroom knowledge to practical problems in the field. Field Supervisors are appointed by the host institution, with the approval of the School of Public Health (SPH), to provide the guidance and supervision of the student.

ASSESSMENT
Continuous assessment will be based on quizzes, written assignments, and scheduled mid-term examinations. Assessment of field work will be through supervisor’s evaluation and log book, student’s presentations and reports. End-of-Semester examinations will be conducted for each course taken. Final grade for the program will be based on the totality of all these assessments.

COURSE CONTENT
Students pursuing the Masters degree are required to take a total of 26 credits of core courses, 8 credits of elective courses, 6 credits of practical attachment, and 3 credits of seminars (total of 43 credits). The breakdown of the load for the two semesters is as follows:

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>26</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>8</td>
</tr>
<tr>
<td>Health Informatics Practicum</td>
<td>6</td>
</tr>
<tr>
<td>Seminars</td>
<td>3</td>
</tr>
</tbody>
</table>

For the second semester, students may select courses offered from other SPH departments to meet the minimum required credit hours for the program and also to meet their own professional needs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 601</td>
<td>Methods in Biostatistics I</td>
<td>3</td>
</tr>
<tr>
<td>BSTT 613</td>
<td>Research Methods in Health Informatics</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>BSTT 615</td>
<td>Fundamentals of Health Informatics</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 617</td>
<td>Database Management &amp; Administration</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 619</td>
<td>Information Systems Analysis &amp; Design</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 621</td>
<td>Data Analysis &amp; Software Applications I</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 615</td>
<td>Foundations of Public Health</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 607</td>
<td>Principles of Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>Total Core</strong></td>
<td><strong>18</strong></td>
</tr>
</tbody>
</table>

**Semester II**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 612</td>
<td>Ethical &amp; Legal Concerns in Health Informatics</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 616</td>
<td>Geographic Information System Applications</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 618</td>
<td>Health Information Security</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 632</td>
<td>Health Data &amp; Electronic Health Care Records</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>Total Core</strong></td>
<td><strong>8</strong></td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 602</td>
<td>Methods in Biostatistics II</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 614</td>
<td>Health Surveillance Informatics</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 622</td>
<td>Data Analysis &amp; Software Applications II</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 634</td>
<td>Web Technology</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 636</td>
<td>Data Mining &amp; Knowledge Discovery</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 638</td>
<td>Software Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BSTT 658</td>
<td>Health Informatics Practicum</td>
<td>6</td>
</tr>
<tr>
<td>BSTT 610</td>
<td>Special Seminars in Health Informatics</td>
<td>3</td>
</tr>
</tbody>
</table>

**COURSE DESCRIPTIONS**

**Semester I**

**BSTT 601 METHODS IN BIOSTATISTICS I**

Course introduces the basic statistical concepts and methods as applied to diverse problems in public health, medicine and clinical trials. It demonstrates methods of exploring, organizing, and presenting data, and introduces fundamentals of probability, including probability distributions and conditional probability with applications to case-control studies and diagnostic testing. It presents the foundations of statistical inference, including concepts of population parameter, sampling and sampling distribution of estimates, and approaches to inferences using confidence intervals and hypothesis tests for normal and non-normal data, sample size estimation, contingency tables and chi-square tests, 1-way analysis of variance, simple linear regression and correlation. Statistical software packages, STATA and SPSS are employed to manipulate data and for data analysis.

**BSTT 613 RESEARCH METHODS IN HEALTH INFORMATICS**

This course provides the student the opportunity to develop competencies in the design, analysis, interpretation and evaluation of health informatics research studies. It exposes the student to theoretical approaches to and practical applications of research. An introduction to empirical methods, including qualitative and quantitative methods, the design of surveys and experiments and analysis of the resulting data, sampling, questionnaire design, data collection and data
processing. The course also discusses ethical issues involved in medical research, such as patient consent and confidentiality.

**BSTT 615  FUNDAMENTALS OF HEALTH INFORMATICS**

The purpose of this course is to provide students with a basic understanding of Health Informatics and its application in a public health setting. It introduces the definition of data, information and knowledge as well as what defines a system and a model. A central focus will be issues relating to privacy, confidentiality, security and the ethical use of health information. This will include discussions of relevant legislation.

**BSTT 617  DATABASE MANAGEMENT & ADMINISTRATION**

This course covers the study of relational database design, using SQL and MS Access. This includes data structures, logic database design, the relational model, and the process of normalization and the functions of a database management system. Object-oriented database design is introduced, and query languages, their implementation and comparisons with relational design are covered.

**BSTT 619  INFORMATION SYSTEMS ANALYSIS AND DESIGN**

This course will focus on the design, implementation and components of Information Systems. The course will include a history of health and healthcare information systems. It will examine the changing uses and expectations of such systems and their expected usage at each level of development. The course will explore new options in technology and design, which will allow for the clinically driven Information Systems of the future. The needs of multiple disciplines will be explored to understand how they can share and communicate patient information using Information Systems.

**BSTT 621  DATA ANALYSIS & SOFTWARE APPLICATIONS I**

This course familiarizes students with the use of the statistical software packages and skills needed for effective data management, data manipulation, and data analysis. Students learn how to document and replicate their work. Graphical techniques for displaying data and the interpretation of statistical results are discussed. The software introduced may vary from semester to semester although exclusive to STATA, SPSS and SAS, with STATA as the common choice. However, most technical knowledge and computing techniques covered in the course are applicable to any statistical package. Students must have a laptop computer with the appropriate software installed.

**EPDC 615  FOUNDATIONS OF PUBLIC HEALTH**


**EPDC 607  PRINCIPLES OF EPIDEMIOLOGY**

Definitions: uses of epidemiology. Disease and health. Disease measurement and significance of indices used. Mortality measurement and significance of indices used. Standardization of rates.
Epidemiological methods; descriptive, analytic, experimental. Application of epidemiology to investigation of epidemics and for community diagnosis. Epidemiology of Diseases; Communicable diseases, Non-communicable Diseases. Screening. New Epidemiological Concepts, for example, Burden of disease, DALYs, special groups at risk.

Semester II

BSTT 612 ETHICAL & LEGAL CONCERNS IN HEALTH INFORMATICS
Health Informatics involves rapidly changing technology, which impacts the way in which legal and ethical considerations are understood in our culture. This course will examine the relationships between technology of collection, processing, transmission and dissemination of information, and law & ethics. Particular considerations will be given to the concepts of privacy, autonomy, responsibility and decision-making. These concepts will be discussed from both legal and ethical perspectives. The impact of current and future technology will be discussed as it relates to these concepts and the impact on Health Informatics.

BSTT 614 HEALTH SURVEILLANCE INFORMATICS
The course will introduce students to the principles of a good surveillance system, different types of surveillance and the different applications of surveillance in public health. The practical challenges that confront surveillance systems in resource-poor settings and how they could be remedied will be discussed.

BSTT 616 GEOGRAPHIC INFORMATION SYSTEM APPLICATIONS
The course introduces the use of geographic information systems (GIS’s) in the analysis of public health data. GIS skills are developed through homework and case studies, and in particular, basic GIS operations such as buffering, layering, and spatial queries are addressed. In addition to GIS issues the course addresses introductory cartography, and basic statistical aspects of spatial analysis.

BSTT 618 HEALTH INFORMATION SECURITY
This course will address security issues as they impact health information systems. It will focus on strategies for designing, implementing, auditing and evaluating the technical, physical and human components of an information security system that adheres to a healthcare organization’s legal, ethical and organizational requirements. Physical security of the hardware and software including redundancy, back up and restricted access will be discussed. Security and appropriateness of access will be addressed in terms of both hardware and software solutions. Data integrity, audit ability and system integrity will be considered along with the unique problems, which result from network access.

BSTT 632 HEALTH DATA AND ELECTRONIC HEALTH CARE RECORDS
This course covers approaches to the management of clinical information, focusing on the role and purpose of healthcare records and the development of electronic healthcare record architectures. It deals with practical issues such as standardization, security and evaluation as well as disease classifications and more theoretical questions of medical knowledge representation and the comparison of methodologies. The course will review the impact of electronic records on health
and healthcare including legal, financial and clinical design issues.

Electives

**BSTT 602**  
**METHODS IN BIOSTATISTICS II**  
(Pre-requisite: Semester I)

**BSTT 601** Methods in Biostatistics I  
This course expands on the student’s abilities to conduct and report the results of valid statistical analysis of quantitative medical/health information by focusing on multiple linear regression, two-way analysis of variance models, covariance analysis with single covariate, nonparametric methods, logistic regression with dichotomous and continuous independent variable, introductory survival analysis, and sample size determination controlling for both type I and type II errors.

**BSTT 622**  
**DATA ANALYSIS & SOFTWARE APPLICATIONS II**  
(Pre-requisite: BSTT 621) Data Analysis & Software Applications I  
This course expands on the student’s skills in STATA, SPSS or SAS to know when and how to use the relevant software in performing each of a comprehensive set of the most important and frequently used data analysis techniques for research and evaluation in medical/health research. The student will choose the most appropriate data analysis tools, to perform qualitative, descriptive, inferential, parametric, non-parametric, multifactor and multivariate techniques as well as graphical data modelling analytic techniques using the computer. Qualitative data analysis and related software will demonstrate alternate methods for data collection and reduction. Students must have a laptop computer with the appropriate software installed.

**BSTT 634**  
**WEB TECHNOLOGY**  
The subject of this course is the delivery of dynamic information via the internet. Most internet applications follow a client/server model, and as a result, dynamic data generation can be found at two places: creation of data from dynamic sources in the server, and dynamic presentation of this data to the user. A recent development, which enhances the usability and portability of dynamic data presentation, is the emergence of international standards for representation of data between the client and the server. The course will focus especially on these areas.

**BSTT 636**  
**DATA MINING & KNOWLEDGE DISCOVERY**  
Database mining and knowledge discovery from large databases is one of the most active topics in database research, at the intersection of database systems, statistics, information retrieval, pattern recognition, AI/machine learning, and data visualization. The course will introduce data mining methods and study their principles, algorithms, implementations, and applications.

**BSTT 638**  
**SOFTWARE ENGINEERING**  
This course aims at presenting the fundamental principles of software engineering and illustrates the application of those principles in the different phases of the software development, namely, software design, process, quality, and requirements. Students will be exposed to current technology used to develop software. Both the theoretical and practical aspects of software engineering will be presented in the course. Students will apply software engineering techniques to homework assignments and mini-projects throughout the course.
BSTT 658    HEALTH INFORMATICS PRACTICUM
Students spend an initial familiarization and problem identification field visit of 1 week and a 12-week practical period on the field acquiring competencies in health informatics with institutions whose functions have been identified to be relevant to the objectives of the program, and who are also capable of providing the training grounds for the students. It is a period of planned and supervised learning experience in a functionally relevant institution, where the student will, among others, gain experiences which are not usually available in a classroom, apply classroom learning to practice, enhance public health and health information management skills, and provide limited services to the institution.
Field supervisors are appointed by the institution, with the approval of SPH, to provide the guidance and supervision of the student.

Practicum Evaluations:
The assessment of the student’s practicum experience will be based on the following:
1. Assessment determined by the field supervisor and based on the level of progress made by the student towards the acquisition of the competencies in health informatics.
2. Review and marking of the student’s log book that captures his/her daily activities. The logbook must be read and signed by the field supervisor
3. Assessment of presentation by student on field experiences and products developed.
4. Marking of the final project report (with electronic copies on a CD) submitted by the student within 3 weeks of completion of practicum experience.

The final grade for the practicum will be based on the totality of all the above.

BSTT 610    SPECIAL SEMINARS IN HEALTH INFORMATICS
For both semesters, students in the Health Informatics program are expected to attend all departmental student seminars, where students are made to give at least one presentation on a review article which, may or may not be in their area of intended research.
In addition, students are to attend and provide critic of series of seminars given by visiting speakers including health informatics experts, clinicians, managers and consultants involved in some of the leading health informatics projects in Ghana. Examples of any new clinical and health informatics services are explored.

MASTER OF SCIENCE (MSc.) IN CLINICAL TRIALS

DURATION
The programme will be full time for a period of two semesters (12 months)

ENTRY REQUIREMENTS
A good first degree in a relevant discipline from a recognised university, preferably with three years relevant working experience. Candidates should have a background or interest in public health.

COURSE STRUCTURE
There will be 2 semesters and a field attachment for 10 weeks. The programme will consist of a
combination of didactic lectures and field placement activities. Candidates will be expected to pass all the core courses.

**EVALUATION STRATEGY**
Students will be expected to participate fully in the programme. Attendance will be required at all formal instruction at the University of Ghana Legon campus, and in the field. Assignments will be expected to be completed in a timely manner.

**CONTINUOUS ASSESSMENT**
Eight evaluation methods will be used throughout the programme. These methods can be characterised in three major categories

### Core Courses

**Semester I**
- **EPDC 607** Principles of Epidemiology 3
- **EPDC 651** Fundamentals of clinical trials 3
- **EPDC 653** Basic statistics for clinical trials 2
- **EPDC 655** Clinical trials in practice 2
- **EPDC 657** Reporting and reviewing clinical trials 2
- **EPDC 659** Protocol development 2
- **EPDC 661** Ethics of Clinical Research in developing countries 2

**Additionl Elective (Optional) Courses**
- **EPDC 613** Introduction to Non-Communicable Disease Epidemiology 2
- **EPDC 620** Computers in Public Health Research 2

**Semester II**

**Programme Electives**
- **EPDC 652** Trial Designs 2
- **EPDC 654** Project management and research co-ordination 2
- **EPDC 656** Regulatory Issues, and good clinical and laboratory practice 2
- **EPDC 658** Data Management 2
- **EPDC 662** Design and analysis of epidemiological studies 2
- **EPDC 664** Advanced statistical methods in clinical trials 2
- **EPDC 666** Cluster randomized trials 2
- **EPDC 668** Data Monitoring and interim analyses 2

**Additional Elective (Optional) Courses**
- **EPDC 606** Disease Outbreak Investigation and Response 2
- **EPDC 618** Injury Epidemiology 2
- **EPDC 620** Computers in Public Health Research 2
- **EPDC 622** Scientific Communications 2
EPDC 632  Epidemiology of Malaria and Planning its Control  2
EPDC 634  Epidemiological Methods for Evaluating Health
Programmes and Services  2
EPDC 636  Selected topics in Epidemiology  3
EPDC 638  Cardiovascular Disease Epidemiology  2
EPDC 670  Dissertation  12

**Field Work & Practicum**
Practical attachment to sites in Ghana to give hands-on experience in trial procedures

**COURSE DESCRIPTIONS**

**EPDC 607  PRINCIPLES OF EPIDEMIOLOGY**
Definitions: uses of epidemiology. Disease and Health. Disease measurement and significance of indices used. Mortality measurement and significance of indices used. Standardization of rates. Epidemiological methods: descriptive, analytic, experimental. Application of epidemiology to investigation of epidemics and for community diagnosis. Epidemiology of Diseases: Communicable diseases, Non-communicable Diseases. Screening. New Epidemiological Concepts, for example, Burden of disease, DALYs, special groups at risk.

**EPDC 651  FUNDAMENTALS OF CLINICAL TRIALS**
The aim of this course is to introduce students to the key features in the design, conduct and reporting of clinical trials. The course will cover: Principles of Clinical Trials, The Role of Observational Studies, Randomisation, The Use of Blinding and Placebos, Size of Trials, Monitoring Trial Results, Reporting Trial Results, Multiplicity of Data: Subgroup Analysis, Multiplicity of Data: Multiple Outcomes/Treatments and Repeated Measures, Alternative Designs,
  - Explore key decisions surrounding the design and analysis of clinical trials
  - Explain the principles of trial conduct and reporting

**EPDC 653  BASIC STATISTICS FOR CLINICAL TRIALS**
The aim of this course is to introduce students to basic statistical methods relevant to use in clinical trials. The course will cover; Introduction to Basic Statistics for Clinical Trials, Types of Data Summary and Data Presentation, Probability: Evaluating the Role of Chance, The Normal or Gaussian Distribution, The Binomial Distribution, Principles of Statistical Inference. Point and Interval Estimation, Inference from a Sample Mean, Comparison of Two Means, Comparison of Two Proportions, Association Between Two Categorical Variables, Measures of Effect in 2 x 2 Tables, Correlation and Linear Regression, Introduction to Survival Analysis, Allowance for Baseline Values.

**EPDC 655  CLINICAL TRIALS IN PRACTICE**
The aim of the course is to explore practical aspects of the conduct of clinical trials. The course will cover; Before the Trial Starts, Responsibilities, Roles, and Governance, Essential Documents, Project Management, Methods of Data Collection, Data Processing and Management, Recruitment and Randomization, GCP in Relation to Quality Assurance and Quality Control, Follow-up, Analysis, Reporting and Dissemination of Results.
EPDC 657 REPORTING AND REVIEWING CLINICAL TRIALS
This course is to enable the students to describe how trials are reported using best practice and to carry out and report a systematic review of the literature on a topic. The course will cover; Introduction to Reporting and Reviewing Clinical Trials, Critical Appraisal of a Clinical Trial Report, Title, Abstract and Background for a Clinical Trial Report, Methods for a Clinical Trial Report, Results for a Clinical Trial Report, Discussion and Abstract Sections for a Clinical Trial Report, Submitting a Paper to and Dealing with a Journal, Including Peer Review, Introduction to Systematic Reviews. Why Do We Need Them and What Do They Do? Critical Appraisal of Systematic Reviews, Systematic Reviews and Selection Bias, Synthesis in systematic reviews.

EPDC 659 PROTOCOL DEVELOPMENT
The course material will build on the work of the core units, and will go further into the steps to be taken for preparing the protocol for a trial: including data collection forms, logistical and budgetary issues, and procedures of different funding bodies.

EPDC 661 ETHICS OF CLINICAL RESEARCH IN DEVELOPING COUNTRIES
The course aims to discuss the critical ethical issues related to conducting clinical trials in the developing world. The course will cover a historical overview of research ethics in the developing world, risk-benefit assessments, vulnerable populations as research subjects, informed consent: process and documentation, privacy and confidentiality of research subjects and data, responsible conduct of scientific research, the role and functions of Institutional Review Boards, Data and Safety Monitoring Boards, international research; the Declaration of Helsinki

EPDC 652 TRIAL DESIGNS
Use of different trial designs: non-inferiority and equivalence, cross-over, factorial, multi-armed and cluster randomized trials in assessing interventions and therapies, including complex interventions. Strengths and weaknesses of each design: discussed together with implications for sample size requirements, analytic methods, interpretation and reporting.

EPDC 654 PROJECT MANAGEMENT AND RESEARCH CO-ORDINATION
Project and Business Management Theory: within the context of a clinical trial, this course will teach students to develop a project management plan; identify key milestones and develop delivery plans; implement and co-ordinate the project plan with an emphasis on communication and project promotion and monitoring. Consider the major challenge of identifying barriers to implementation and creating deliverable solutions.

EPDC 656 REGULATORY ISSUES, GOOD CLINICAL & LABORATORY PRACTICE
Regulatory legislation and associated approvals and permissions required to conduct high-quality single-centre, national and international clinical trials. Integral to the legislation is Good Clinical Practice (GCP): understand GCP explore ways of implementing GCP, including risk assessment and trial monitoring. Explore Good Laboratory Practice (GLP) in trial settings, Quality control and assurance systems.

EPDC 658 DATA MANAGEMENT
Issues in the collection of data and their subsequent management prior to analysis will be addressed in this course. Students will be taught how to define and write a management plan and
use different computer packages to implement the plan in practice.

**EPDC 662 DESIGN AND ANALYSIS OF EPIDEMIOLOGICAL STUDIES**
Epidemiological studies: important background information prior to initiating a trial. Trial datasets may prove to be the basis for further epidemiological research. Introduction to key considerations in planning and designing epidemiological studies: includes descriptions and interpretations of epidemiological measures, including disease frequency, effect, and public health impact, and the relative merits of different study designs. Strategies for addressing sampling error, bias and confounding in epidemiological studies Analytic methods including stratified and multivariable approaches; critical appraisal of design, analysis and interpretation of published epidemiological studies.

**EPDC 664 ADVANCED STATISTICAL METHODS IN CLINICAL TRIALS**
This course will build on Basic Statistics for Clinical Trials and cover more advanced statistical methods in clinical trials. Methods of analysis include graphical data analysis, analysis of variance, linear regression, logistic regression and survival analysis. Discussion of other topics include, adjustment for covariates, repeated measures and other correlated data, missing data, sub-group analyses and sensitivity analyses. Data analyses will be carried out using Stata/SPSS/EPI

**EPDC 666 CLUSTER RANDOMIZED TRIALS**
Trials in which individuals are randomized in groups (clusters): These are being increasingly utilized, especially in the fields of infectious diseases, implementation research, and public health and complex interventions. Advantages and disadvantages of the use of cluster trials: particular emphasis on statistical considerations for their design and analysis, as well as the implications for informed consent and reporting.

**EPDC 668 DATA MONITORING AND INTERIM ANALYSES**
The course covers issues relating to on-going monitoring of data in a study so that sufficient data are available to answer the trial’s question reliably without recruiting more patients than necessary, or exposing them to unacceptable risks. Focus is on the ethical context of decisions: whether or not to continue entering patients into trials. A number of different statistical approaches will be explored, and the role and conduct of data monitoring committees in this process will be examined.

**EPDC 606 DISEASE OUTBREAK INVESTIGATIONS AND RESPONSE**
Factors that suggest infectious cause of disease, those that determine the spatial, temporal and social distributions of communicable diseases, and the measurement of the transmissibility of infections. Design, implementation, analysis, interpretation and report of an outbreak investigation. Principles underlying mathematical models of communicable diseases. Methods for evaluating vaccine efficacy, and practical applications of epidemiological methods through the study of specific diseases

**EPDC 613 INTRODUCTION TO NON COMMUNICABLE DISEASE EPIDEMIOLOGY**
An overview of non-communicable diseases in both developed and developing country settings, the global burden of such diseases, temporal trends in mortality from cardiovascular diseases and
cancer, diet and cancer and the epidemiology and prevention of mental disorders. Developing and criticizing strategies for preventing cardiovascular disease at the community and individual level.

EPDC 618 INJURY EPIDEMIOLOGY
Introduction to injury as a public health problem. Research methods, study designs, risk factors, and prevention strategies applied to the problem of injuries. General framework for students to apply to the study of specific injury mechanisms.

EPDC 620 COMPUTERS IN PUBLIC HEALTH RESEARCH
Computer hardware and operating systems: Personal computer components, modern operating system designs, basic concepts of computer networks, Windows ® Operating system: navigation, file management, Spreadsheet software and its application in science: Navigate a worksheet, Create a new worksheet, Create and correct simple formulas, Create graphs.

Word Processing software and its application in science: Navigate a document, Modify text by changing the font, size and adding special effects, Manipulate text using copy, cut and paste, Format paragraphs with bullets, numbering and alignment, Modify page layout.

Graphics software and its applications in science: creating and modifying presentations, designing effective presentations, using graphs, charts and images.

Internet: Basic concepts of Web structure and its application in science, Internet/Email and applications, finding and using online literature, search for information on the internet.

Use a computer to manage data in field investigation, introduction to data processing and analysis, designing questionnaires, data entry, cleaning and validation in Epi Info, basic data management in Stata (labeling, recoding, writing do – and log – files).

EPDC 622 SCIENTIFIC COMMUNICATION
Identification of target audience. Scientific writing: articles, perspectives, review articles, editorials, executive summaries, books. Review and creation of abstracts. Responsibilities of authorship and co-authorship and intellectual property rights, including patent. Dissemination of research findings: oral scientific presentations, lectures, posters, bulletin articles, scientific articles for peer-reviewed journals, internal office correspondence; Media relations. Public Health Advocacy. (Workshop)

EPDC 632 EPIDEMIOLOGY OF MALARIA AND PLANNING ITS CONTROL
Epidemiology of malaria, Surveillance, Planning for malaria control, communication: community mobilization and advocacy, Strategic management functions and practices, Health economics and social aspects of malaria, Malaria research agenda and process, Strategic orientation of prevention and control of malaria.

EPDC 634 EPIDEMIOLOGICAL METHODS FOR EVALUATING HEALTH PROGRAMS AND SERVICES
Definition of health evaluation, Methodological frameworks for evaluating health programs, Health evaluation categories & indicators, Typologies of indicators for evaluation of public health
services, Research designs for evaluative studies, How to quantify effects of health programmes, Reporting health evaluation.

**EPDC 636  SELECTED TOPICS IN EPIDEMIOLOGY**
Readings in the philosophy and technique of epidemiologic modeling. Peer review process including validity and reliability of the peer review system. Common mistakes in reporting results from epidemiologic research.

**EPDC 638  CARDIOVASCULAR DISEASE EPIDEMIOLOGY**
History of cardiovascular disease (CVD) epidemiology, Classification of CVDs, Epidemiology of CVDs in rich economies, Epidemiology of CVDs in LMICs, Genetic basis of CVDs, Paediatric causes of CVDs, Tobacco control, Obesity, Stroke, Coronary artery disease, Rheumatic heart disease, Diabetes and cardiovascular diseases, Conducting field trials in CVDs, Approaches to control of CVDs – dietary approaches.

**EPDC 670  DISSERTATION**
The objective of the dissertation is to test the student’s skill in defining problem and designing appropriate research study to evaluate the problem. The essay should not be more than 80 pages or 28,840 words.

**M.SC/ M.PHIL IN APPLIED HEALTH SOCIAL SCIENCE**
(MSc./ MPHIL AHSS)

**INTRODUCTION**
Applied Health Social Sciences is an interdisciplinary field which emphasizes the application of the entire range of Health Social Science disciplines such as Sociology, Psychology, Economics, Anthropology to Public Health and the application of Social Science research methodologies and Implementation Research to promote health and well-being. The course is therefore, designed to provide a structured but flexible exposure to topics in the areas of Public Health, Biostatistics, Social Science methods in Health Systems/ Implementation Research, Health Policy and Ethics. The main thrust of the programme is to expose health and development workers to Social Science techniques, tools, approaches, methodologies and best practices needed for effective programme design, implementation, monitoring, evaluation, and management. Students will be exposed to various field experiences and practices and would be required to master Social Science approaches to health research. Some of the main areas of application include health promotion, gender advocacy in health, gender in development, implementation research, health research, health programme design, implementation, and management, the application of Social Science to health programme and service delivery, management and sustainability, and health promotion activities.

**ENTRY REQUIREMENTS**
A good first degree in Social Science or Health, with preferably three (3) years working experience. Candidates should have a background or interest in Public Health.

**STRUCTURE OF THE PROGRAMME**
The Applied Health Social Science Programme is one of a series of programmes planned by the department in pursuance of its goals and objectives. The programme has two (2) versions – an MSc and an MPhil respectively.
MSc (AHSS)
The MSc. Applied Health Social Science (AHSS) programme has been organised as a 12-month full-time residential course of two semesters and 12-week of field practice. The first semester will be devoted to core course work and the second to both core and elective course work. After the second semester examinations, students will devote a maximum of twelve (12) weeks to field practice and/or field attachment where they will have hands-on experience of Implementation Research and the Research Cycle, Community Mobilisation, Health Promotion and Practice etc.

MPhil (AHSS)
Students who perform creditably in the first semester of the first year and wish to pursue the MPhil programme will be advised to apply for an upgrade in programme. In addition to the two (2) semesters described above, the MPhil students will spend two additional semesters in the field collecting and analysing data and writing up their thesis. Additionally, during the two semesters, MPhil students will be expected to participate in two Research Seminars where they will present various aspects of their Thesis Research, from the proposal development to the stage of completion, to students and faculty of SPH. This exercise is to help students sharpen their information dissemination skills based on their thesis research as well as to help them produce good theses.

COURSE DELIVERY
Course delivery will include lectures, seminars, workshops, group work, student presentations, and assignments. Tutorials may be given on individual or group basis. Teaching staff for the courses will be drawn from the SPH, the University faculty at large and senior specialists from the Ghana Health Service. Academic Supervisors will guide student research and production of theses from the Department, other departments in SPH as well as collaborating institutions in the University of Ghana. District Directors of Health Service specially appointed in collaboration with SPH and Directors of Research or designated staff will serve as Field Supervisors. Students will use existing University facilities such as lecture theatres, library, laboratories, and designated District Health service set-ups and field stations etc.

PROGRAMME REQUIREMENTS
Students enrolled in the MSc. AHSS option will be expected to complete a total between 39 – 45 credit hours of course work. This is made up of 25 credit hours of core course work offered in the first and second semesters, and 8 credit hours of elective course work offered during the same period: four credit hours in each semester. In the 12 weeks following the second semester, MSc. students will complete 3 credit hours of field practicals and attachment and 12 credit hours of dissertation production.

For the MPhil programme option, students will be expected to complete a total of 60 - 72 credit hours. The course structure for the first year of the MPhil option of the programme follows the same structure as the first year of the MSc. programme option. During the second year however, MPhil students will undertake 3 credit hours of field practicals and attachment, 30 credit hours of Thesis Research and write up and 3 credit hours of two (2) Thesis Research seminars.
### FIRST SEMESTER

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 601</td>
<td>Methods in Biostatistics I</td>
<td>3</td>
</tr>
<tr>
<td>BSTT 603</td>
<td>Research Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 607</td>
<td>Principles of Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 615</td>
<td>Foundations of Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 611</td>
<td>Behavioural Science</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 620</td>
<td>Applied Social Science for Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 650</td>
<td>Health Promotion and Practice</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 670</td>
<td>Fundamentals of Implementation Research (IR)</td>
<td>2</td>
</tr>
</tbody>
</table>

### Second Semester

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 602</td>
<td>Implementation Research</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 604</td>
<td>Social Science Data Management and Report Writing</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 608</td>
<td>Gender and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 622</td>
<td>Community Mobilisation in Health and Development</td>
<td>2</td>
</tr>
</tbody>
</table>

**Electives**

| SOBS 612 | Theories and Models of Health Promotion       | 2       |
| SOBS 614 | Evidence-based Approach to Health Communication | 2       |
| SOBS 616 | Global Perspectives in Health Promotion       | 2       |
| SOBS 618 | Health Research Policy Development and Implementation | 2       |
| SOBS 624 | Ageing and Health                             | 2       |
| SOBS 626 | Women’s Health in sub-Saharan Africa          | 2       |
| SOBS 628 | Gender and Violence                           | 2       |
| SOBS 634 | Health and Development in the Third World     | 3       |
| SOBS 636 | Plural Medical Systems in the Third World     | 2       |
| SOBS 664 | Social Science Theories in Public Health Practice & Research | 2       |
| HPPM 642 | Advanced Health Systems Development and Management | 2       |

### Field Practice Period

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 666</td>
<td>Field Practicals and Attachment</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 680</td>
<td>Dissertation in AHSS</td>
<td>12</td>
</tr>
</tbody>
</table>

### MPHIL PROGRAMME

**Year I**

**First Semester**
<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTT 601</td>
<td>Methods in Biostatistics I</td>
<td>3</td>
</tr>
<tr>
<td>BSTT 603</td>
<td>Research Methods in Public Health</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 607</td>
<td>Principles of Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 615</td>
<td>Foundations of Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 611</td>
<td>Behavioural Science</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 620</td>
<td>Applied Social Science for Public Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 650</td>
<td>Health Promotion and Practice</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 670</td>
<td>Fundamentals of Implementation Research (IR)</td>
<td>2</td>
</tr>
</tbody>
</table>

**Second Semester**

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 602</td>
<td>Implementation Research</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 604</td>
<td>Social Science Data Management and Report Writing</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 608</td>
<td>Gender and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 622</td>
<td>Community Mobilisation in Health and Development</td>
<td>2</td>
</tr>
</tbody>
</table>

**Electives**

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 612</td>
<td>Theories and Models of Health Promotion</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 614</td>
<td>Evidence-based Approach to Health Communication</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 616</td>
<td>Global Perspectives in Health Promotion</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 618</td>
<td>Health Research Policy Development and Implementation</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 624</td>
<td>Ageing and Health</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 626</td>
<td>Women’s Health in sub-Saharan Africa</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 628</td>
<td>Gender and Violence</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 634</td>
<td>Health and Development in the Third World</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 636</td>
<td>Plural Medical Systems in the Third World</td>
<td>2</td>
</tr>
<tr>
<td>SOBS 664</td>
<td>Social Science Theories in Public Health Practice &amp; Research</td>
<td>2</td>
</tr>
<tr>
<td>HPPM 642</td>
<td>Advanced Health Systems Development and Management</td>
<td>2</td>
</tr>
</tbody>
</table>

* All MPhil Students are advised to take SOBS 664 - Social Science Theories in Public Health Practice & Research.

**Year II**

<table>
<thead>
<tr>
<th>Core</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBS 610</td>
<td>Seminars - Research Proposal and Research Results</td>
<td>3</td>
</tr>
<tr>
<td>SOBS 690</td>
<td>Thesis - Write Up and Submission</td>
<td>30</td>
</tr>
</tbody>
</table>

**DESCRIPTION OF COURSES**

| SOBS 666 | FIELD PRACTICALS AND ATTACHMENT |
For field practicals and attachment, students will be attached to various District and Regional Health and Research Institutions. The main import of this exercise is for students to bring all the skills acquired in the classroom as regards Implementation Research and Social Science research methodologies to bear on the identification and solving of health problem at the field site.

SOBS 602 IMPLEMENTATION RESEARCH
The course will introduce students to the three cycles of Implementation Research: Pre-intervention, Intervention, and Post-intervention Cycles. Students will also be introduced to the community entry techniques, situational analysis, stakeholders’ analysis, stakeholder consultations, cultural and social relations in the community.

SOBS 604 SOCIAL SCIENCE DATA MANAGEMENT AND REPORT WRITING
Social Science data is made up of both qualitative and quantitative data. Every set of qualitative data collected is distinct because it captures the thoughts and experiences of individuals and people. It is a challenge to analyse the data and therefore there is the need to look at the data systematically and comparatively i.e. manually and, with the assistance of qualitative data analysis software.

SOBS 608 GENDER AND HEALTH
The main aim of this course is to provide Public Health and Development Workers with the relevant understanding of the role of gender in the health and welfare of the populace. The course examines the interrelationship between gender and health. It examines the socio-cultural, socio-political, and socio-economic constructs of gender and how these constructs affect women and men’s health in the developing world. This course moves beyond a description of specific health problems to critically analyze how women and men’s health problems develop, are perceived, and responded to both medically and socially in the contemporary society. In this context, an important theoretical aspect of the course is the development of a socio-medical perspective on health and, specifically, the analysis of women and men’s health in relation to their lives and how culture, social institutions, and social policies shape these experiences. Course topics include gender concepts, patriarchy, gender, experience, culture, power, health; poverty, health and health care, gender, and men’s health. Additionally, it explores the various ways in which the study of gender and health helps Public Health and Development workers to understand women and men’s health in a changing world.

SOBS 610 SEMINARS
All students in the Department or Programme at this level are expected to attend all seminars specified and be made to give at least one seminar on a review article which, may or may not be in their area of intended research. This should be in both the first and second semester.

SOBS 611 BEHAVIOURAL SCIENCE
The course is in two (2) parts. Health and development work requires that professionals with different backgrounds work together to address problems in the field. The first part of the course addresses the principles and methods of group dynamics, team building, and teamwork. The second part of the course is based on the premise that most of society’s health and disease problems are behaviour/lifestyle induced. The students are exposed to the social, economic, political, and cultural contexts within which illness occurs. Opportunities are given which enable
students to appreciate public health and related problems more holistically and to assess critically the impact of socio-cultural dynamics on the health seeking behaviours of individuals and groups in society.

**SOBS 612 THEORIES AND MODELS OF HEALTH PROMOTION**
This course is designed to help students understand why theories, models, and constructs are considered the backbone of the processes used to plan, implement, and evaluate Health Promotion interventions. During the course, students are provided with opportunities to review some social science and/or behavioural theories and models and explore how these can be used to guide programme planners in selecting the type of interventions that are needed to accomplish specified goals and objectives. The appropriate use of learning and behavioural theories can help to ensure congruence between the planned interventions and expected outcomes.

**SOBS 614 EVIDENCE-BASED APPROACH TO HEALTH COMMUNICATION**
The course is designed to walk the students through the steps of a communication plan, which has to be based on good research. Students need to understand the importance of having a plan in place before developing communication activities. The planning steps begin with the identification of the problem to be addressed and the target population as well as behaviours that need to change. Then a formative assessment is conducted to help identify the communication objective. Community design and strategy development workshops are held to facilitate the process of selecting communication approaches. Messages are developed and channels selected before materials are developed and produced.

**SOBS 616 GLOBAL PERSPECTIVES IN HEALTH PROMOTION**
The course is designed to help the student examine the challenges associated with the implementation of Health Promotion activities around the globe with special reference to the context of the developing world. It also provides insights into how to design effective strategies within severe resource constraints. Health Promotion interventions have contributed to substantial improvements in the health status of many nations. Systematic motivations of families clearly helped bring about the reductions in mortality rates recorded in many countries. In recent years, these impressive gains in maternal and child survival have levelled off in some countries while in others the positive trends have even reversed. Important lessons learned will be discussed.

**SOBS 618 HEALTH RESEARCH POLICY DEVELOPMENT AND IMPLEMENTATION**
This course aims at providing a general understanding of how public policies and programmes are developed in the sub-Saharan Africa context at all levels. It also aims at providing some understanding of the factors that affect the success or failure of control policy and programmes development and the basic principles of advocacy for better policy and programmes development and implementation at all levels of the health system.

**SOBS 620 APPLIED SOCIAL SCIENCE FOR PUBLIC HEALTH**
The aim of this course is to introduce students to the theoretical underpinnings of the range of social sciences that are applied in Public Health research and practice. These include Anthropology, Demography, Economics, Geography, Law, Political Science, Psychology, and Sociology. Students will explore the challenges of multidisciplinary, interdiscipliary, and cross-
disciplinary research and practice. These applied social science disciplines were developed in response to increasing specialities that employed and adapted the principles of the disciplines in the study of contemporary societies. Applied Social Science for Public Health is an interdisciplinary and dynamic field, which integrates the knowledge and tools for research and analysis from a range of these disciplines for the purposes of understanding the various determinants of health and developing solutions to public health problems.

**SOBS 622 COMMUNITY MOBILISATION IN HEALTH AND DEVELOPMENT**
This course is designed to introduce students to commonly used communication approaches at the periphery and help them develop community mobilisation plans. In order for community mobilisation to be successful, it is essential that all people and organisations involved feel ownership of the plan, support the plan, and be engaged in implementing the plan. Community mobilisation uses a variety of communication channels and usually relies heavily on face-to-face communication. Practical examples will be discussed and the group process outlined.

**SOBS 624 AGEING AND HEALTH**
The course introduces students to the issues of global ageing in general and with reference to Africa in particular. The impact of ageing on the structure and composition of society and its implications for the economy, health, and development will be discussed. The course also explains the magnitude of health and development issues as they relate to ageing and enables students to do a gender analysis of these issues. Students will be given the opportunity to review existing policies and programmes and identify gaps and issues for research, advocacy, and planning.

**SOBS 626 WOMEN’S HEALTH IN SUB-SAHARAN AFRICA**
The main goal of the course is to explain a variety of health problems faced by sub-Saharan African women, often compounded by cultural values, and religious principles that influence decision-making processes on reproductive and other health issues. The course will also review various factors that impinge on women’s health and emphasise some of the emerging changes brought about by gender mainstreaming of health issues in sub-Saharan Africa. Students will have the opportunity to compare the situation of sub-Saharan African women with those from other parts of the world including the United States.

**SOBS 628 GENDER AND VIOLENCE**
This course introduces students to the demographic, socio-cultural, and economic factors that impact on gender and violence. Students will be exposed to a wide range of issues that include physical, emotional, and sexual abuse. They will also look at the impact of violence on mental health and the various coping strategies and responses to physical violence.

**SOBS 634 HEALTH AND DEVELOPMENT IN THE THIRD WORLD**
For the past decade or so, the relationship between health and development has been discussed at both the national and international level. This course will allow students to examine the various social, economic, and political changes that have taken place in the developing world and analyze the impact such changes have had on the health status of populations. The course will define development and explain the link between health and development. It will then review some social and economic development theories as well as the demographic and health transition theories in relation to the developing world. This will lead to an examination of the demographic/health profile of developing nations (e.g. Ghana) and the historical perspective of development policies.
and their impact on health delivery. This course will also examine critical health issues and their impact on the development and health delivery efforts of developing countries (e.g. HIV/AIDS, Malaria etc.). The role of international agencies in health delivery and the impact of urban growth on health delivery will also be discussed by the class.

**SOBS 636**  
**PLURAL MEDICAL SYSTEMS IN THE THIRD WORLD**  
Indigenous people have developed regimes for addressing health needs. With the introduction of biomedicine, the pattern of health seeking behaviour has changed to accommodate the diverse health resources. The course will examine the rationale for several medical systems in the developing world and how these health resources are utilised at the individual and national level.

**SOBS 650**  
**HEALTH PROMOTION AND PRACTICE**  
The course is designed to enhance the student’s knowledge of the basic concepts and strategies of Health Promotion. It will provide opportunities for appropriate application of Health Promotion interventions in changing and uncertain environments with special focus on key players charged with preventing diseases and promoting Public Health. Emphasis will be placed on behaviour change theories, strategies and methods for responding to emerging and pertinent Public Health issues. Students will be exposed to the importance of research in Health Promotion and Practice and also encouraged to appreciate the role of Health Promotion in Public Health Practice.

**SOBS 664**  
**SOCIAL SCIENCE THEORIES IN PUBLIC HEALTH PRACTICE AND RESEARCH**  
Public Health is about the prevention of diseases, injuries, and disability as well as the promotion of good health all of which require a change in human behaviour. This course examines, in detail, theoretical frameworks in the social sciences such as the Health Belief Model, Social Cognitive Theory, Stage Theory, Theory of Reasoned Action, and others. Emphasis will be given to the application of these theories in public health practice, the design, and evaluation of public health interventions and in research.

**SOBS 670**  
**FUNDAMENTALS OF IMPLEMENTATION RESEARCH**  
This course seeks to provide an overview of the principles underlying implementation research. Implementation research for disease control is applied social science related research that aims to develop the critical evidence base for the effective and sustained adoption of interventions. It deals with the knowledge gap between efficacy, effectiveness, and current practice to produce the greatest gains in disease control. Implementation research involves the systematic and critical investigation and analysis of the dynamic processes that influence how individuals, populations and health systems adapt in order to adopt new technologies and interventions. Additionally the course will provide active and experiential learning involving fieldwork and research, introduce students to population profiles, community entry techniques, community involvement in research and collaborative research.

**SOBS 680**  
**DISSERTATION**  
All students in the Department or Programme at this level are expected to write a dissertation based on a chosen and approved topic. This involves a research proposal that is approved in the first semester after which data is collected, analysed and written up in the second semester.
MASTER OF PHILOSOPHY IN APPLIED EPIDEMIOLOGY AND DISEASE CONTROL (M.PHIL AEPDC)

PROGRAMME DURATION
The programme will be full time for a period of 2 semester (24 months)

ENTRY REQUIREMENTS
A good first degree in a relevant discipline preferably with three (3) years relevant working experience. Candidates should have a background or interest in public health.

COURSES
The course requirement is as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course work</td>
<td>24-36</td>
</tr>
<tr>
<td>Seminar presentation I</td>
<td>3</td>
</tr>
<tr>
<td>Seminar presentation II</td>
<td>3</td>
</tr>
<tr>
<td>Research/Thesis</td>
<td>30</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>62-72</strong></td>
</tr>
</tbody>
</table>

YEAR 1

Core Courses

Semester I

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDC 603</td>
<td>Principles of Field Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 605</td>
<td>Public Health Surveillance I</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 601</td>
<td>Epidemiological Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 609</td>
<td>Laboratory Methods in the field</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 613</td>
<td>Introduction to Non Communicable Disease Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>PFRH 613</td>
<td>Introduction to Population Studies</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 610</td>
<td>Data Management Information Systems</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester II

Laboratory Public Health Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDC 608</td>
<td>Public Health Surveillance II</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 610</td>
<td>Data Management Information Systems</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 614</td>
<td>Management &amp; Leadership</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 616</td>
<td>Laboratory Management, Policy &amp; System Design</td>
<td>3</td>
</tr>
<tr>
<td>BSTT 632</td>
<td>Advanced Biostatistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Epidemiology Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDC 608</td>
<td>Public Health Surveillance II</td>
<td>3</td>
</tr>
<tr>
<td>EPDC 602</td>
<td>Advanced Epidemiology</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 610</td>
<td>Data Management Information Systems</td>
<td>2</td>
</tr>
<tr>
<td>EPDC 614</td>
<td>Management &amp; Leadership</td>
<td>2</td>
</tr>
</tbody>
</table>
Electives (Maximum of 6 credits)

- EPDC 636 Selected topics in Epidemiology 3
- EPDC 628 Economic Analysis and Evaluation 2
- *EPDC 606 Disease Outbreak Investigation and Response 2
- EPDC 634 Epidemiological Methods for Evaluating Health Programs and Services 2
- EPDC 632 Epidemiology of Malaria and Planning its Control 2
- EPDC 638 Cardiovascular Disease Epidemiology 2
- BEOH 602 Environmental Health 2
- PFRH 606 Introduction to Family Health 2
- BEOH 612 Occupational Health 1
- PFRH 614 Public Health Nutrition 1
- *EPDC 618 Computers in Public Health Research 2
- *EPDC 622 Scientific Communications 2
- EPDC 617 Injury Epidemiology 2

Year II

Semester I

Seminar I
Each student will make a presentation on his/her thesis research proposal

- EPDC 660 Seminar I 3
- EPDC 680 Research Work 30

Semester II

Seminar II
Each student will make a presentation on his preliminary work and present a progress report midway into the second semester.

- EPDC 660 Seminar II 3
- EPDC 680 Research Work 30

A candidate is required to take a minimum of 62 and a maximum of 72 credits in four semesters.

COURSE DESCRIPTIONS

EPDC 601 EPIDEMIOLOGICAL RESEARCH METHODS
Research: definition, use, and application. Types of research: participatory, qualitative, operational, and evaluative. Study Designs; Research Methods: qualitative and quantitative. Proposal and protocol development and implementation. Funding: management of resources, technical and financial analysis of research projects; Collaboration and partnership in research;
Questionnaire design. Ethics and regulation of research: Fundamental ethical principles – respect of persons and justice, Risks of research: physical, psychological, social and economic and minimization of risk; Benefits of research: physical, psychological, social and economic and maximization of benefits. The Declaration of Helsinki – guidelines in health and biomedical research involving human subjects (a portion of this course will be a workshop)

**BSTT 602 METHODS IN BIOSTATISTICS II**
Pre-requisite: BSTT 601 Methods in Biostatistics I
This course expands on the student’s abilities to conduct and report the results of valid statistical analysis of quantitative public health information by focusing on multiple linear regression, two-way analysis of variance models, covariance analysis with single covariate, nonparametric methods, logistic regression with dichotomous and continuous independent variable, introductory survival analysis, and sample size determination controlling for both type I and type II errors.

**EPDC 603 PRINCIPLES OF FIELD EPIDEMIOLOGY**
Introduction to Field Investigations: Steps of an epidemiological field investigation, Laboratory methods for epidemiologists, Biosafety Field Investigation Reports, Principles of screening, measures of test performance and predictive value theory, Evaluate investigation from 4 viewpoints: scientific, community, media, political
Outbreak Investigations: Describe essential roles in the logistics of outbreak organization and response, hypothesis generation, Design a useful prevention and control recommendation for outbreak investigation, Develop a risk communication strategy for a field investigation.
Data management: Identify the data investigators and decision makers’ needs during an investigation, describe how data needs change throughout the course of an investigation, data cleaning and editing.

**EPDC 605 PUBLIC HEALTH SURVEILLANCE I**
Basic principles of public health surveillance: Define public health surveillance systems and their value in public health, national & regional surveillance systems, List sources of data used for surveillance, Identify needs when establishing a surveillance system, International Health Regulations and their impact on public health
Evaluate public health surveillance systems: Steps to evaluate a surveillance system, Detect aberrations in surveillance, Conduct an evaluation, Provide constructive feedback

**EPDC 608 PUBLIC HEALTH SURVEILLANCE II**
Analyze and interpret surveillance data using Epi Info, SPSS, DataManager and HealthMapper software: Evaluate the reliability and validity of surveillance data, Analyze and interpret time series data, Describe Epidemiology and surveillance of injuries and non communicable diseases: Unique data sources of data for injury and non-communicable disease, global & national trends in chronic disease, Estimate burden of chronic disease (mortality, hospital discharge, BRF) at national & regional levels. Establish a surveillance system

**EPDC 609 LABORATORY METHODS IN THE FIELD**
Describe the function and structure of laboratory as it interacts with clinical medicine and public health
Coordinate laboratory and epidemiology activities including test selection, communication, and reporting results in the field.
Analyze and interpret laboratory data accounting for factors that influence the results of diagnostic tests
Identify and implement appropriate specimen collection, storage, and transportation measures

Laboratory’s role in surveillance for communicable diseases: The impact of laboratory results on disease and diagnosis, Reporting mechanisms within a laboratory based surveillance system

EPDC 613 INTRODUCTION TO NON COMMUNICABLE DISEASE EPIDEMIOLOGY
An overview of the importance in non-communicable diseases in the developing world. Describe the burden and trend of non-communicable diseases in the developing world. Identify methodological issues in identifying causes in non-communicable diseases. Identify evaluation processes in preventive strategies of non-communicable diseases. Historical overview of the emergence of non-communicable disease epidemiology. Surveillance for non-communicable diseases in the developing world. Application of different types of study designs (e.g., ecological, cohort studies, case-control studies, etc) of major non-communicable diseases (e.g., circulatory diseases, cancers, diabetes mellitus, lung diseases, tobacco and substance abuse related disorders, mental disorders).

EPDC 680 RESEARCH/FIELD PLACEMENT
Design, implement or evaluate a public health surveillance or health information system
Conduct or participate substantively in a field investigation of a potentially serious public health problem that requires a rapid public health response.
Use surveillance or other health information system to identify public health problems requiring investigation
Develop, conduct and interpret an epidemiological analysis of a new or existing data set
Develop and carry out an epidemiological study or survey to assess a health problem of public health importance.
Respond appropriately to written or oral public health inquiries from the public, the media, government officials, or other health professionals
Manage a public health project.

EPDC 610 DATA MANAGEMENT INFORMATION SYSTEMS
Databases and database systems: Use appropriate software such as Epi-Info, SPSS, STATA or SAS to manage public health data; develop and modify questionnaires; Enter and store data; Conduct basic analysis; prepare frequencies, tables, and graphs; Import files from other applications; Interface with Microsoft applications. Use the SAS statistical package to document work and make work replicable. Graphical techniques for displaying data in SAS. Epidemiologic uses of GIS.

EPDC 614 MANAGEMENT & LEADERSHIP
Team building, Managing field operations, Time management, Training techniques and mentoring skills Project management, Planning a public health intervention – analyze health problems using determinants, risk factors, and contributing factors.
Supervisory skills, Negotiation and Conflict management, Interview skills, basic budgeting and finance tasks, Manage meetings, Organize field resources, supervisory skills development goals
Personal information management, Leadership models and Introduction to total quality
management

EPDC 616 LABORATORY MANAGEMENT, POLICY AND SYSTEM DESIGN

Laboratory documentation and records management, Organization management: Personnel Management, Equipment management,: Procurement: purchasing of laboratory equipment i.e. acceptance procedure;

and inventory management, Process control management, Information management, Internal and external assessment, Process Improvement, Facilities and safety, Specimen storage systems, Planning field laboratory investigations for surveillance-sentinel or routine, for disease outbreaks and research. Essential Laboratory needs at different levels: Local, District, Provincial, and National. Public Health versus hospital diagnostic laboratory services. Laboratory building design (laboratory safety) and laboratory system design, Laboratory Legal issues, Ethical issues, Laboratory personnel training and competency, quality monitoring, proficiency testing. Laboratory standards and accreditation. (Workshop)

EPDC 604 ADVANCED EPIDEMIOLOGY

Data interpretation and hypothesis generation, Causation – Koch’s postulate and modern causality structure, Study design specifics – Case-Control studies, case and control selection, Cohort studies – prospective, retrospective Analytical Cross-sectional studies, Experimental studies – randomized trial, Measures of association and impact - 2 by 2 tables absolute risk, relative risks and odds ratios, attributable risk, Rate standardization – direct and indirect adjustment, Confounding and effect modification – random error and systematic error, types of bias, control of confounding, Analyzing complex surveys and the use of matching, Sampling – methods, cluster, estimation, Qualitative methods – focus groups, key informants, Exploratory data analysis, Regression – linear and logistic regression.

EPDC 624 FUNDAMENTAL LABORATORY METHODS

Principles of Good Laboratory Practices – standard operating procedures, Principles of Biosafety – universal precautions and personal protective equipment, dangerous goods regulations, infectious substance regulations and radioactive material regulations, bio-containment issues, Techniques for recovering and identifying bacterial, parasitic, fungal and viral pathogens – microscopy, colony morphology, media , grams and other stains, Molecular technologies including PCR, CD4/CD8 testing, Viral load testing – impact of viral load on patient and disease status, Drug Resistance Testing in Bacteria, Mycobacteria and HIV – techniques of drug resistance testing and value of knowledge, Global Disease Eradication Initiatives, Rapid tests evaluation

PFRH 613 INTRODUCTION TO POPULATION STUDIES

Demographic Transition, Epidemiologic Transition, And Coale And Hoover Theory.

**BEOH 602 ENVIRONMENTAL HEALTH**


**EPDC 606 DISEASE OUTBREAK INVESTIGATION AND RESPONSE**

Introduction to Integrated Disease Surveillance and Response; The Role of the Laboratory in Integrated Disease Surveillance and Response; Investigate and Respond to Suspected Outbreaks/ Epidemics (Introduction, Case Control Studies, Report Writing); Public Health Disease Surveillance; Introduction to Scientific Writing.

**PFRH 606 INTRODUCTION TO FAMILY HEALTH**


**BEOH 622 OCCUPATIONAL HEALTH**

Students will undertake advanced courses in Occupational Medicine and Hygiene in relation to agriculture, industrialisation and topics relating to the national and international economic activities and social issues. Discussions will focus on research in any aspect of hazards and pathophysiology encountered in the working environment, particularly in the area of respiratory physiology and related population predicted values. Advanced studies in Occupational Epidemiology, Ergonomics, Occupational Toxicology and Psychology will be emphasized. Legal and administrative aspects of occupational safety and health and compensation issues will be explored.

**PFRH 614 PUBLIC HEALTH NUTRITION**

This course provides basic nutritional information and is designed to enable students develop the insight in Nutrition Issues, on the acquisition and efficient utilisation of food resources that ensure optimal growth, development and health.

**EPDC 619 COMPUTERS IN PUBLIC HEALTH RESEARCH**

1. Basic concepts of Web structure and its application in science, Internet/Email and applications, finding and using online literature, search for information on the internet.
2. Use a computer to manage data in field investigation, introduction to data processing and analysis, designing questionnaires, data entry, cleaning and validation in Epi Info, basic data management in Stata (labeling, recoding, writing do – and log – files)
3. Students will be introduced to the advanced principles of STATA, including data management, manipulation and analysis. Students will be taught how to create new datasets,
specifying subsets of data, generating and replacing variables, importing data from other programs, combining two or more datasets, etc. In addition, they will be taught how to generate summary statistics, including generation of two-way and multiple-way cross tabulations. They will be introduced to how to generate tests statistics and hypothesis. It is also expected that by the time students would have gone through the course, they would have been introduced to how to run regression analysis as well as doing diagnostic test. Finally, students will be taught how to generate graphs from their data.

**EPDC 620 INJURY EPIDEMIOLOGY**

Introduction to injury as a public health problem. Research methods, study designs, risk factors, and prevention strategies applied to the problem of injuries. General framework for students to apply to the study of specific injury mechanisms.

**EPDC 622 SCIENTIFIC COMMUNICATIONS**

Identification of target audience. Scientific writing: articles, perspectives, review articles, editorials, executive summaries, books. Review and creation of abstracts. Responsibilities of authorship and co-authorship and intellectual property rights, including patent. Dissemination of research findings: oral scientific presentations, lectures, posters, bulletin articles, scientific articles for peer-reviewed journals, internal office correspondence; Media relations. Public Health Advocacy. (Workshop)

**EPDC 628 ECONOMIC ANALYSIS & EVALUATION**


**EPDC 632 EPIDEMIOLOGY OF MALARIA AND PLANNING ITS CONTROL**

Epidemiology of malaria, Surveillance, Planning for malaria control, communication: community mobilization and advocacy, Strategic management functions and practices, Health economics and social aspects of malaria, Malaria research agenda and process, Strategic orientation of prevention and control of malaria.

**EPDC 634 EPIDEMIOLOGICAL METHODS FOR EVALUATING HEALTH PROGRAMS AND SERVICES**

Definition of health evaluation, Methodological frameworks for evaluating health programs, Health evaluation categories & indicators, Typologies of indicators for evaluation of public health services, Research designs for evaluative studies, How to quantify effects of health programmes, Reporting health evaluation.
**EPDC 636 SELECTED TOPICS IN EPIDEMIOLOGY**

Readings in the philosophy and technique of epidemiologic modelling. Peer review process including validity and reliability of the peer review system. Common mistakes in reporting results from epidemiologic research.

**EPDC 638 CARDIOVASCULAR DISEASE EPIDEMIOLOGY**

History of cardiovascular disease (CVD) epidemiology, Classification of CVDs, Epidemiology of CVDs in rich economies, Epidemiology of CVDs in LMICs, Genetic basis of CVDs, Paediatric causes of CVDs, Tobacco control, Obesity, Stroke, Coronary artery disease, Rheumatic heart disease, Diabetes and cardiovascular diseases, Conducting field trials in CVDs, Approaches to control of CVDs – dietary approaches.

**EPDC 665 SEMINAR I**

Each student will make a presentation on his/ her thesis research proposal

**EPDC 660 SEMINAR II**

Each student will make a presentation on his/ her preliminary work and present a progress report midway into the second semester.

**DOCTOR OF PHILOSOPHY (PH.D) IN PUBLIC HEALTH** is a 3-5 year post-M. Phil programme. This programme may include 24 credit hours of taught course for students who may be adjudged to have a deficiency in Public Health.

**SCHOOL OF ALLIED HEALTH SCIENCES**

**DEPARTMENT OF DIETETICS**

**M. Sc. AND M.PHIL DIETETICS PROGRAMME**

**ENTRY REQUIREMENT**

A good first degree (at least a second class lower division) in Dietetics, Nutrition, Food Science, Biochemistry, Home Science (Food and Nutrition Option) or Nursing. A candidate without any background in Biochemistry will be required to take recommended courses in Biochemistry.

**COURSES**

The following graduate programmes are proposed:

Master of Science (M.Sc): This is a one-year programme of course work in addition to a dissertation.

Master of Philosophy (M.Phil): This is a two-year programme of course work with a thesis.

Regulations governing graduate programmes in the University of Ghana as stated in the Handbook for Graduate Studies shall apply to these programmes.
A semester shall be of 16 weeks duration and shall be structured as:
13 weeks of Teaching
1 week of Revision
2 weeks of Examinations

MASTER OF SCIENCE (M.Sc.) PROGRAMME

FIRST SEMESTER

Core Courses | Credits
------------|--------
DIET 601    | 2
DIET 603    | 2
DIET 605    | 3
DIET 607    | 2
DIET 609    | 2
GSPH 601    | 4

INTER-SEMESTER COURSE
DIET 611    | Clinical Attachment I 2

SECOND SEMESTER

Core Courses | Credits
------------|--------
DIET 602    | 2
DIET 604    | 2
DIET 608    | 3
DIET 612    | 2
DIET 614    | 2
DIET 616    | 2
DIET 630    | 3
DIET 606    | 12

PRESCRIBED ELECTIVES
The following are the prescribed electives.

DIET 622    | Communication Skills 2
MLAB 401    | Principles and Practice of Management 3

M.PHIL DIETETICS

YEAR ONE

Core Courses | Credits
------------|--------
DIET 601  Review of Basic Nutrition  2
DIET 602  Advances in Nutrition in Stress and Sports  2
DIET 603  Advances in Nutrition in Life Cycle  2
DIET 604  Clinical Attachment II  2
DIET 605  Clinical Nutrition I (Diet Therapy)  3
DIET 607  Food Resources in Ghana and Ethical Issues in Dietetics practice  2
DIET 608  Clinical Nutrition II  3
DIET 609  Food Analysis and Diet Laboratory  2
DIET 612  Food Safety and Toxicology  2
DIET 614  Advances in Food Preservation  2
DIET 616  Social Psychology  2
DIET 630  Seminar I  3
GSPH 601  Biostatistics and Research Methods  4

INTER-SEMESTER COURSE (FIRST SEMESTER)
DIET 611  Clinical Attachment I  2

INTER-SEMESTER COURSE (SECOND SEMESTER)
DIET 618  Clinical Attachment II  3

PRESCRIBED ELECTIVES
The following are the prescribed electives.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIET 622</td>
<td>2</td>
</tr>
<tr>
<td>MLAB 401</td>
<td>3</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIET 600</td>
<td>30</td>
</tr>
<tr>
<td>DIET 640</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

DIET 600  RESEARCH PROJECT
The Research Project involves a supervised individual project in dietetics. It involves the identification of a specific problem in dietetics and formulating a research hypothesis. The student designs and plans a project to test the hypothesis, undertakes the project, analyzes and interprets the information obtained and writes a thesis in an acceptable scientific format. The thesis shall comply with all the requirements set out in the University of Ghana Handbook for Graduate Studies.
**DIET 601  REVIEW OF BASIC NUTRITION**

An overview of nutrition to include brief history and definitions of nutrients and their metabolism, energy balance; functions and food sources of nutrients; food composition data; recommended nutrient intake data; nutritional deficiency disorders; and the link between diet and disease.

**DIET 602  ADVANCES IN NUTRITION IN STRESS AND SPORTS**

The course covers nutrition and physical fitness, nutrition and stress management, and nutrition and sports. Nature of stress; Physiologic metabolic response to stress; Life cycles stress period; Stress related to work; High risk stress management; Nutrition and sports.

**DIET 603  ADVANCES IN NUTRITION IN LIFE CYCLE**

Nutritional consideration of pregnancy and lactation; and nutrition related to human growth and maintenance requirements from infancy through adolescence to the ageing years.

The course covers nutritional considerations of pregnancy and lactation; nutrition related to human growth; maintenance requirements from infancy through adolescence to the ageing years. Nutrition and pregnancy outcome; Maternal nutrient needs; Normal life cycle growth pattern; Nutritional requirements; Nutrition for adults - early, middle and later years; Individuality in nutritional needs of elderly persons.

**DIET 605  CLINICAL NUTRITION I**

Nutritional assessment and diet therapy in patient care, drug-nutrient interactions, enteral and parenteral nutrition, aetiology, pathogenesis and management of diseases including:

- diseases of infancy and childhood,
- gastrointestinal diseases,
- diseases of the liver,
- diseases of the gallbladder,
- pancreatic diseases.

**DIET 606  DISSERTATION**

The Dissertation is to assess the student’s ability to define a specific problem in dietetics, critically analyze the problem, research on and discuss available literature on the problem, and suggest appropriate solutions based on sound scientific principles and evidence-based practices.

**DIET 607  FOOD RESOURCES IN GHANA AND ETHICAL ISSUES IN DIETETICS PRACTICE**

A review of the food balance sheet of Ghana with respect to the availability of food in the marketplace in relation to meeting dietary needs of individuals in health and disease.

Consideration of ethical and professional issues – Code of Ethics; relationship with other health professionals. Ethics of health promotion. Politics of health – the effects of socio-economic and political influences on health choices, analysis of local national and international influences and conflicts. Ethical issues arising from dietary treatment of patients (Ethical decision-making process) and research underlying the principles of dietary treatment. Influence of advertisements on the choice of diet. Client/practitioner confidentiality. Patient’s rights – the patient charter. Food and Drugs Board – regulations and role in control of food products.
DIET 608  CLINICAL NUTRITION II
The course consolidates the practical experience obtained in the clinical training and further develops the students’ understanding of causes and development of disease and the role of dietary management of disease. It is to prepare students for further clinical practice.

Etiology and management of: cardio-vascular diseases – hypertension; atherosclerosis and ischaemic heart disease; stroke; diabetes mellitus and other endocrine disorders;

renal disease – nephritic syndrome; chronic renal failure; obesity; AIDS; Cancer; disabling diseases – (e.g. multiples sclerosis); surgical patients.

DIET 609  FOOD ANALYSIS AND DIET LABORATORY
The course develops the students’ knowledge of the principles of the nature of food components and their application in formulating and evaluating diets. This is a practical hands-on course and the students’ ability to handle and interpret information will be enhanced. Proximate food analysis - moisture, crude protein, fat, crude fibre, ash, carbohydrate, and total energy, formulation and evaluation of diets. Practical report writing.

DIET 611  CLINICAL ATTACHMENT I
This is a four-week practical vocational training period for students with no dietetics background to study Departmental Administration. Students will be introduced to the functions of the Department and will be required to spend one week in administrative offices (reception and record-keeping) and three weeks in the Clinics with the Dietician in order to become familiar with Departmental routine and to experience patient care in the clinical situation. The students will learn about appointment system, initial referral clinic/appointment, review clinic/appointment, and follow-up clinic/appointment and the organization of dietetic services in the country.

DIET 612  FOOD SAFETY AND TOXICOLOGY
The course emphasizes direct, indirect and incidental food additives and the hazards they pose in clinical situations.

Food additives and toxicology; Risk – benefit analysis of direct food additives; Toxicological evaluation of substances; Natural toxicants in foods; Agro-chemical residues in foods.

DIET 618  CLINICAL ATTACHMENT II
The student will be required to work under the supervision of a practicing dietician in the hospital Function of the dietician within and outside the Ghana Health Service.

Anthropometric measurements; Preparing out-patient cards; Taking dietary history;
Underlying physiological and biochemical abnormalities, clinical signs and symptoms and diagnosis of a range of disorders requiring treatment by therapeutic diet;

Design, preparation and evaluation of therapeutic diets for various disorders seen at the clinic; Nutritional and organoleptic effects of dietary manipulation; counselling patients and caregivers; giving out dietary information sheets; follow-up and record keeping.
**DIET 622 COMMUNICATION SKILLS**
The course covers communication processes and interpersonal relations.

Dynamics of communication, Verbal communication – Active/effective listening; Empathic responding; interview skills, Non-verbal communication, Medical record information, communication process, channels of communication, factors promoting good communication, barriers in communication, interpersonal communication skills – professional communication.

**DIET 614 ADVANCES IN FOOD PRESERVATION**
The course covers problems of food spoilage and its effect on food balance sheet and food security. It covers the principles of food preservation and the effect of food processing on nutrients.

**DIET 616 SOCIAL PSYCHOLOGY**
Theories and principles of social psychology in social work application in dietetic practice.

Objectives: At the end of the course, the student should be able to apply knowledge in social studies in dietetic practice.

**DIET 630 SEMINAR I**
In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topics to an audience. Each student will be expected to make at least one oral presentation to be assessed each semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

**DIET 640 SEMINAR II**
For year 2, each student will make a presentation soon after the Year I examinations on his/her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

**MLAB 401 PRINCIPLES AND PRACTICE OF MANAGEMENT**
Approved Course in School of Allied Health Sciences.
The course introduces the student to the principles and practice of management and imparts to the student the basic managerial and administrative skills required to run an organization and to formulate and implement strategies for growth and development. A wide range of topics is covered and will be tailored to the hospital environment with particular reference to management of a dietetics department/unit.

**GSPH 601 BIOSTATICS AND RESEARCH METHODS**
(Approved course in School of Public Health)